
Package: RSiena (via r-universe)
October 27, 2024

Encoding UTF-8

Type Package

Title Siena - Simulation Investigation for Empirical Network Analysis

Version 1.4.19

Date 2024-09-03

Maintainer Tom A.B. Snijders <tom.snijders@nuffield.ox.ac.uk>

Depends R (>= 3.5.0)

Imports Matrix, lattice, parallel, MASS, methods, xtable

Suggests network, tools, codetools, tcltk

SystemRequirements GNU make

Description The main purpose of this package is to perform
simulation-based estimation of stochastic actor-oriented models
for longitudinal network data collected as panel data.
Dependent variables can be single or multivariate networks,
which can be directed, non-directed, or two-mode; and
associated actor variables. There are also functions for
testing parameters and checking goodness of fit. An overview of
these models is given in Snijders (2017),
<doi:10.1146/annurev-statistics-060116-054035>.

License GPL-2 | GPL-3 | file LICENSE

LazyData yes

Biarch yes

NeedsCompilation yes

BuildResaveData no

URL https://www.stats.ox.ac.uk/~snijders/siena/

BugReports https://github.com/stocnet/rsiena/issues

Repository https://stocnet.r-universe.dev

RemoteUrl https://github.com/stocnet/rsiena

RemoteRef HEAD

RemoteSha 8f25c0bf881f3c8767ac670559282dfc8c3ab033

1

https://doi.org/10.1146/annurev-statistics-060116-054035
https://www.stats.ox.ac.uk/~snijders/siena/
https://github.com/stocnet/rsiena/issues


2 Contents

Contents
RSiena-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
allEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
coCovar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
coDyadCovar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
edit.sienaEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
effectsDocumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
funnelPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
getEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
hn3401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
includeEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
includeGMoMStatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
includeInteraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
includeTimeDummy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
iwlsm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
n3401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
plot.sienaTimeTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
print.sienaEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
print.sienaMeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
print.sienaTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
print01Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
s50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
s501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
s502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
s503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
s50a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
s50s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
setEffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
siena07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
siena08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
sienaAlgorithmCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
sienaCompositionChange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
sienaDataConstraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
sienaDataCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
sienaDependent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
sienaFit.methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
sienaGOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
sienaGOF-auxiliary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
sienaGroupCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
sienaNodeSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
sienaTimeTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
simstats0c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
summary.iwlsm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
tmp3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
tmp4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
updateTheta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
varCovar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



RSiena-package 3

varDyadCovar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Wald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
xtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Index 103

RSiena-package Simulation Investigation for Empirical Network Analysis

Description

Fits statistical models to longitudinal sets of networks, and to longitudinal sets of networks and
behavioral variables. Not only one-mode networks but also two-mode networks and multivari-
ate networks are allowed. The models are stochastic actor-oriented models, described in Snijders
(2017).

Recent versions of the package are distributed through GitHub, see https://github.com/stocnet/
rsiena/.

Bug reports can be submitted at https://github.com/stocnet/rsiena/issues.

Details

The main flow of operations of this package is as follows.

Data objects can be created from matrices and vectors using sienaDependent, coCovar, varCovar,
coDyadCovar, etc., and finally sienaDataCreate.

Effects are selected using an sienaEffects object, which can be created using getEffects and
may be further specified by includeEffects, setEffect, and includeInteraction.

Control of the estimation algorithm requires a sienaAlgorithm object that defines the settings
(parameters) of the algorithm, and which can be created by sienaAlgorithmCreate.

Function siena07 is used to fit a model. Function sienaGOF can be used for studying goodness of
fit.

A general introduction to the method is available in the tutorial paper Snijders, van de Bunt, and
Steglich (2010). Next to the help pages, more detailed help is available in the manual (see below)
and a lot of information is at the website (also see below).

Package: RSiena
Type: Package
Version: 1.4.19
Date: 2024-09-03
Depends: R (>= 3.5.0)
Imports: Matrix, lattice, parallel, MASS, methods, xtable
Suggests: network, tools, codetools, tcltk
SystemRequirements: GNU make
License: GPL-2 | GPL-3
LazyData: yes
NeedsCompilation: yes

https://github.com/stocnet/rsiena/
https://github.com/stocnet/rsiena/
https://github.com/stocnet/rsiena/issues


4 RSiena-package

BuildResaveData: no

Author(s)

Ruth Ripley, Krists Boitmanis, Tom Snijders, Felix Schoenenberger, Nynke Niezink, Christian
Steglich, Viviana Amati. Contributions by Josh Lospinoso, Charlotte Greenan, Johan Koskinen,
Mark Ortmann, Natalie Indlekofer, Mark Huisman, Christoph Stadtfeld, Per Block, Marion Hoff-
man, Michael Schweinberger, Robert Hellpap, Alvaro Uzaheta, Robert Krause, James Hollway, and
Steffen Triebel.

Maintainer: Tom A.B. Snijders <tom.snijders@nuffield.ox.ac.uk>

References

Amati, V., Schoenenberger, F., and Snijders, T.A.B. (2015), Estimation of stochastic actor-oriented
models for the evolution of networks by generalized method of moments. Journal de la Societe
Francaise de Statistique 156, 140–165.

Amati, V., Schoenenberger, F., and Snijders, T.A.B. (2019), Contemporaneous statistics for estima-
tion in stochastic actor-oriented co-evolution models. Psychometrika 84, 1068–1096.

Greenan, C. (2015), Evolving Social Network Analysis: developments in statistical methodology for
dynamic stochastic actor-oriented models. DPhil dissertation, University of Oxford.

Niezink, N.M.D., and Snijders, T.A.B. (2017), Co-evolution of Social Networks and Continuous
Actor Attributes. The Annals of Applied Statistics 11, 1948–1973.

Schweinberger, M., and Snijders, T.A.B. (2007), Markov models for digraph panel data: Monte
Carlo based derivative estimation. Computational Statistics and Data Analysis 51, 4465–4483.

Snijders, T.A.B. (2001), The statistical evaluation of social network dynamics. Sociological Method-
ology 31, 361–395.

Snijders, T.A.B. (2017), Stochastic Actor-Oriented Models for Network Dynamics. Annual Review
of Statistics and Its Application 4, 343–363.

Snijders, T.A.B., Koskinen, J., and Schweinberger, M. (2010). Maximum likelihood estimation for
social network dynamics. Annals of Applied Statistics 4, 567–588.

Snijders, T.A.B., Steglich, C.E.G., and Schweinberger, Michael (2007), Modeling the co-evolution
of networks and behavior. Pp. 41–71 in Longitudinal models in the behavioral and related sciences,
edited by van Montfort, K., Oud, H., and Satorra, A.; Lawrence Erlbaum.

Steglich, C.E.G., Snijders, T.A.B., and Pearson, M.A. (2010), Dynamic networks and behavior:
Separating selection from influence. Sociological Methodology 40, 329–393. Information about the
implementation of the algorithm is in https://www.stats.ox.ac.uk/~snijders/siena/Siena_
algorithms.pdf.

Further see https://www.stats.ox.ac.uk/~snijders/siena/ and https://github.com/stocnet/
rsiena/wiki.

See Also

siena07

https://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf
https://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf
https://www.stats.ox.ac.uk/~snijders/siena/
https://github.com/stocnet/rsiena/wiki
https://github.com/stocnet/rsiena/wiki


allEffects 5

Examples

mynet1 <- sienaDependent(array(c(tmp3, tmp4), dim=c(32, 32, 2)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip)
myeff
myalgorithm <- sienaAlgorithmCreate(nsub=3, n3=200)
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE)
summary(ans)

allEffects Internal data frame used to construct effect objects.

Description

This data frame is used internally to construct effect objects.

Usage

data(allEffects)

Format

A data frame with values for the following 23 variables.

effectGroup a character vector

effectName a character vector

functionName a character vector

shortName a character vector

endowment a logical vector

interaction1 a character vector

interaction2 a character vector

type a character vector

basicRate a logical vector

include a logical vector

randomEffects a logical vector

fix a logical vector

test a logical vector

timeDummy a character vector, default ","

initialValue a numeric vector

parm a numeric vector

functionType a character vector



6 coCovar

period a character vector

rateType a character vector

untrimmedValue a numeric vector

effect1 a logical vector

effect2 a logical vector

effect3 a logical vector

interactionType a character vector

local a logical vector

setting Settings name: ” (no settings), ’primary’, ’universal’ or the name of the defining covari-
ate.

Details

Used to define effects. Not for general user use.

References

See https://www.stats.ox.ac.uk/~snijders/siena/

coCovar Function to create a constant covariate object

Description

This function creates a constant covariate object from a vector.

Usage

coCovar(val, centered=TRUE, nodeSet="Actors", warn=TRUE, imputationValues=NULL)

Arguments

val Vector of covariate values

centered Boolean: if TRUE, then the mean value is subtracted.

nodeSet Name of node set: character string. If the entire data set contains more than one
node set, then the node sets must be specified in all data objects.

warn Logical: is a warning given if all values are NA, or all non-missing values are the
same.

imputationValues

Vector of covariate values of same length as val, to be used for imputation of
NA values (if any) in val. Must not contain any NA.

https://www.stats.ox.ac.uk/~snijders/siena/


coDyadCovar 7

Details

When part of a Siena data object, the covariate is associated with the node set nodeSet of the Siena
data object. In practice, the node set needs to be specified only in the case of the use of the covariate
with a two-mode network.
If there are any NA values in val, and imputationValues is given, then the corresponding elements
of imputationValues are used for imputation. If imputationValues is NULL, imputation is by the
mean value. In both cases, cases with imputed values are not used for calculating target statistics
(see the manual).

Value

Returns the covariate as an object of class "coCovar", in which form it can be used as an argument
to sienaDataCreate.

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaDataCreate, varCovar, coDyadCovar, varDyadCovar, sienaNodeSet

Examples

myconstCovar <- coCovar(s50a[,1])
senders <- sienaNodeSet(50, nodeSetName="senders")
receivers <- sienaNodeSet(30, nodeSetName="receivers")
senders.attribute <- coCovar(rep(1:10, each=5), nodeSet="senders")
receivers.attribute <- coCovar(rep(1:5, each=6), nodeSet="receivers")

coDyadCovar Function to create a constant dyadic covariate object.

Description

This function creates a constant dyadic covariate object from a matrix.

Usage

coDyadCovar(val, centered=TRUE, nodeSets=c("Actors", "Actors"),
warn=TRUE, sparse=inherits(val,"TsparseMatrix"), type=c("oneMode", "bipartite"))

https://www.stats.ox.ac.uk/~snijders/siena/


8 coDyadCovar

Arguments

val Matrix of covariate values. May be sparse, of type "TsparseMatrix".

centered Boolean: if TRUE, then the mean value is subtracted.

nodeSets The name of the node sets with which this covariate is associated. If the entire
data set contains more than one node set, then the node sets must be specified in
all data objects.

warn Logical: is a warning given if all values are NA, or all non-missing values are the
same.

sparse Boolean: whether a sparse matrix or not.

type oneMode or bipartite: whether the matrix refers to a one-mode or a bipartite
(two-mode) network.

Details

When part of a Siena data object, the covariate is assumed to be associated with the node sets named
in nodeSets of the Siena data object. The name of the associated node sets will only be checked
when the Siena data object is created.

Value

Returns the covariate as an object of class "coDyadCovar", in which form it can be used as an
argument to sienaDataCreate.

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaDataCreate, varDyadCovar, coCovar, varCovar

Examples

mydyadvar <- coDyadCovar(s503)

https://www.stats.ox.ac.uk/~snijders/siena/


edit.sienaEffects 9

edit.sienaEffects Allow editing of a sienaEffects object if a gui is available.

Description

Interactive editor for an effects object. A wrapper to edit.data.frame.

Usage

## S3 method for class 'sienaEffects'
edit(name, ...)

Arguments

name An object of class sienaEffects
... For extra arguments (none used at present)

Details

Will be invoked by fix(name) for an object of class sienaEffects.

Value

The updated object. There is no backup copy, and the edits cannot be undone.

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

getEffects

Examples

mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mycovar <- coCovar(rnorm(50))
mydyadcovar <- coDyadCovar(matrix(as.numeric(rnorm(2500) > 2), nrow=50))
mydata <- sienaDataCreate(mynet1, mybeh, mycovar, mydyadcovar)
myeff <- getEffects(mydata)
## Not run:
fix(myeff)

## End(Not run)

https://www.stats.ox.ac.uk/~snijders/siena/


10 effectsDocumentation

effectsDocumentation Function to create a table of documentation of effect names, short
names etc.

Description

Produces a table of the shortnames and other information for effects, either in html or latex.

Usage

effectsDocumentation(effects = NULL, type = "html", display = (type=="html"),
filename = ifelse(is.null(effects), "effects", deparse(substitute(effects))))

Arguments

effects A Siena effects object, or NULL.

type Type of output required. Valid options are "html" or "latex".

display Boolean: should the output be displayed after creation. Only applicable to html
output.

filename Character string denoting file name.

Details

If effects=NULL, the allEffects object is written to a table, either latex or html. This table
presents all the available effects present in this version of RSiena, not delimited by a particular data
set. The default file name is "effects.tex" or "effects.html", respectively.

The table lists all effects, with their name, shortName, whether an endowment (and creation) ef-
fect exists, the value of an effect parameter - if any -, and the interactionType (which can be
empty or: "ego" or "dyadic" for dependent network variables; "OK" for dependent behavior vari-
ables). The latter is important for knowing how the effects can be used in interaction effects. (See
includeInteraction).

If an existing effects object is specified for effects, then all available effects in this effects ob-
ject are listed. This table lists the name (i.e., dependent variable), effect name, shortName, type
(rate/evaluation/endowment/creation), the variables defined as interaction1 and interaction2
(see includeEffects) that specify this effect, the value of an effect parameter - if any -, and the
interactionType.
The GMoM effects, which are those with type=gmm, are listed at the end. For these, the distinction
between the fields name and interaction1, referring to the dependent and the explanatory roles of
the variables, has no meaning.
The default root file name is the name of the input effects object.

Value

Nothing returned. Output files are created in the current working directory.



funnelPlot 11

Author(s)

Ruth Ripley, Tom A.B. Snijders

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

getEffects, includeEffects, summary.sienaEffects, includeInteraction.

Examples

## Not run: effectsDocumentation()

funnelPlot Plot function for a list of sienaFit objects

Description

Draws a funnel plot for a list of sienaFit objects that all have estimated the same parameter.

Usage

funnelPlot(anslist, k, threshold=NULL, origin=TRUE,
plotAboveThreshold=TRUE, verbose=TRUE, ...)

Arguments

anslist A list of object of class sienaFit.

k The number of the parameter to be plotted.

threshold threshold for standard errors: all estimations where the standard error for pa-
rameter k is larger than this threshold will be disregarded.

origin Boolean: whether to include the origin in the plot, if all estimates have the same
sign.

plotAboveThreshold

Boolean: whether to include the estimates for which the standard error is larger
than threshold, and plot them with an asterisk at se=threshold.

verbose Boolean: whether to report in the console all estimates omitted, because either
their standard error is larger than threshold, or they were fixed.

... For extra arguments (passed to plot).

https://www.stats.ox.ac.uk/~snijders/siena/


12 getEffects

Details

The function funnelPlot plots estimates against standard errors for a given effect k, with red
reference lines added at the two-sided significance threshold 0.05. Effects for which a score test
was requested are not plotted (and reported to the console if verbose).
If not all effects with number k are the same in all sienaFit objects, a warning is given. The effect
name for the first object is used as the plot title.
Another funnel plot is available as print.sienaMeta.

Value

The two-column matrix of values of the plotted points is invisibly returned.

Author(s)

Tom Snijders

See Also

siena08, print.sienaMeta

Examples

# A meta-analysis for three groups does not make much sense.
# But using three groups shows the idea.

Group1 <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
Group3 <- sienaDependent(array(c(N3403, HN3403), dim=c(37, 37, 2)))
Group4 <- sienaDependent(array(c(N3404, HN3404), dim=c(33, 33, 2)))
dataset.1 <- sienaDataCreate(Friends = Group1)
dataset.3 <- sienaDataCreate(Friends = Group3)
dataset.4 <- sienaDataCreate(Friends = Group4)
OneAlgorithm <- sienaAlgorithmCreate(projname = NULL, nsub=1, n3=50, seed=123)
effects.1 <- getEffects(dataset.1)
effects.3 <- getEffects(dataset.3)
effects.4 <- getEffects(dataset.4)
ans.1 <- siena07(OneAlgorithm, data=dataset.1, effects=effects.1, batch=TRUE)
ans.3 <- siena07(OneAlgorithm, data=dataset.3, effects=effects.3, batch=TRUE)
ans.4 <- siena07(OneAlgorithm, data=dataset.4, effects=effects.4, batch=TRUE)
funnelPlot(list(ans.1, ans.3, ans.4), k=2)
funnelPlot(list(ans.1, ans.3, ans.4), k=2, origin=FALSE)

getEffects Function to create a Siena effects object

Description

Creates a basic list of effects for all dependent variables in the input siena object.



getEffects 13

Usage

getEffects(x, nintn = 10, behNintn=4, getDocumentation=FALSE, onePeriodSde=FALSE)

Arguments

x an object of class ‘siena" or ‘sienaGroup"

nintn Number of user-defined network interactions that can later be created.

behNintn Number of user-defined behavior interactions that can later be created.
getDocumentation

Flag to allow documentation of internal functions, not for use by users.

onePeriodSde Flag to indicate that the stochastic differential equation (SDE) model dZ(t) =
[aZ(t) + b] dt + g dW(t) should be used, instead of the regular SDE with a
scale parameter. This is only relevant in case the model includes a continuous
dependent variable and one period is studied.

Details

Creates a data frame of effects for use in siena model estimation. The regular way of changing this
object is by the functions includeEffects, setEffect, and includeInteraction.

Note that the class of the return object may be lost if the data.frame is edited using fix. See fix
and edit.data.frame.

Value

An object of class sienaEffects or sienaGroupEffects: this is a data frame of which the rows
are the effects available for data set x.
The effects object consists of consecutive parts, each of which relates to one dependent variable in
the input object. The columns are:

name name of the dependent variable

effectName name of the effect

functionName name of the function

shortName short name for the effect

interaction1 second variable to define the effect, if any

interaction2 third variable to define the effect, if any

type "eval", "endow", "creation", "rate", or "gmm"

basicRate boolean: whether a basic rate parameter

include boolean: include in the model to be fitted or not

randomEffects boolean: random or fixed effect. Currently not used.

fix boolean: fix parameter value or not

test boolean: test parameter value or not

timeDummy comma separated list of periods, or "all", or "," for none – which time dummy
interacted parameters should be included?

initialValue starting value for estimation, also used for fix and test.



14 getEffects

parm internal effect parameter values

functionType "objective" or "rate"

period period for basic rate parameters

rateType "Structural", "covariate", "diffusion"

untrimmedValue Used to store initial values which could be trimmed

effect1 Used to indicate effect number in user-specified interactions

effect2 Used to indicate effect number in user-specified interactions

effect3 Used to indicate effect number in user-specified interactions
interactionType

Defines "dyadic" or "ego" or "OK" effects, used in includeInteraction

local whether a local effect; used for the option localML in sienaAlgorithmCreate

effectFn here NULL, but could be replaced by a function later

statisticFn here NULL, but could be replaced by a function later

netType Type of dependent variable: "oneMode", "behavior", or "bipartite"

groupName name of relevant group data object

group sequential number of relevant group data object in total

effectNumber the sequence number of the row

The combination of name, shortName, interaction1, interaction2, and type uniquely identifies
any effect other than basic rate effects and user-specified interaction effects. For the latter, effect1,
effect2 and effect3 are also required for the identification. The combination name, shortName,
period and group uniquely identifies a basic rate effect.

The columns not used for identifying the effect define how the effect is used for the estimation.

The columns initialValue and parm should not be confused: initialValue gives the initial
value for the parameter to be estimated, indicated in the manual by theta; parm gives the internal
value of the parameter defining the effect, indicated in the manual (Chapter 12) by p, and is fixed
during the estimation.

Note that if an effects object is printed by print(...), by default only the included rows are
printed.

A list of all effects in a given effects object (e.g., myeff), including their names of dependent
variables, effect names, short names, and values of interaction1 and interaction2 (if any), is obtained
by executing effectsDocumentation(myeff).

As from version 1.3.24, effects object have a "version" attribute. Effects objects including interac-
tion effects created by includeInteraction are not necessarily compatible between versions of
RSiena. Therefore it is recommended, for effects objects including any interaction effects, to create
them again when changing to a new version of RSiena. If an effects object including any interaction
effects is used from an old version of RSiena, this will lead to a warning when running siena07.

Author(s)

Ruth Ripley, Tom Snijders



hn3401 15

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaDataCreate, sienaGroupCreate, includeEffects, setEffect, includeGMoMStatistics,
updateSpecification, print.sienaEffects, effectsDocumentation

Examples

mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mycovar <- coCovar(rnorm(50))
mydyadcovar <- coDyadCovar(matrix(as.numeric(rnorm(2500) > 2), nrow=50))
mydata <- sienaDataCreate(mynet1, mybeh, mycovar, mydyadcovar)
myeff <- getEffects(mydata)
myeff

hn3401 Network data: excerpt from "Dutch Social Behavior Data Set" of Chris
Baerveldt.

Description

Matrices N3401, N3403, N3404, N3406, and HN3401, HN3403, HN3404, HN3406 are two waves
of networks for four schools (numbered 1, 3, 4, 6).

Format

Adjacency matrices for the network at two time points. The matrices with name N... are the first
wave, those with name HN... are the second wave.

There is a tie from pupil i to pupil j if i says that he/she receives and/or gives emotional support
from/to pupil j. The data are part of a larger data set (see source below) and were collected under
the direction of Chris Baerveldt.

Source

https://www.stats.ox.ac.uk/~snijders/siena/CB_data.zip

References

Houtzager, B. and Baerveldt, C. (1999), Just like Normal. A Social Network Study of the Relation
between Petty Crime and the Intimacy of Adolescent Friendships. Social Behavior and Personality
27, 177–192.

Snijders, T.A.B., and Baerveldt, C. (2003), A Multilevel Network Study of the Effects of Delinquent
Behavior on Friendship Evolution. Journal of Mathematical Sociology 27, 123–151.

See https://www.stats.ox.ac.uk/~snijders/siena/BaerveldtData.html

https://www.stats.ox.ac.uk/~snijders/siena/
https://www.stats.ox.ac.uk/~snijders/siena/CB_data.zip
https://www.stats.ox.ac.uk/~snijders/siena/BaerveldtData.html


16 includeEffects

Examples

mynet <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
mydata <- sienaDataCreate(mynet)

includeEffects Function to include effects in a Siena model

Description

This function can be used for model specification by modifying a Siena effects object.

Usage

includeEffects(myeff, ..., include = TRUE, name = myeff$name[1], type = "eval",
interaction1 = "", interaction2 = "", fix=FALSE, test=FALSE, character=FALSE,
verbose = TRUE)

Arguments

myeff a Siena effects object as created by getEffects

... short names to identify the effects which should be included or excluded.

include Boolean. default TRUE, but can be switched to FALSE to turn off an effect.

name Name of dependent variable (network or behavior) for which effects are being
included. Defaults to the first in the effects object.

type Type of effects to be included: "eval", "endow", "creation", or "rate".

interaction1 Name of siena object where needed to completely identify the effects e.g. co-
variate name or behavior variable name.

interaction2 Name of siena object where needed to completely identify the effects e.g. co-
variate name or behavior variable name.

fix Boolean. Are the effects to be fixed at the value stored in myeff$initialValue
or not.

test Boolean. Are the effects to be tested or not (requires fix).

character Boolean: are the effect names character strings or not.

verbose Boolean: should the print of altered effects be produced.

Details

Recall from the help page for getEffects that a Siena effects object (class sienaEffects or
sienaGroupEffects) is a data.frame; the rows in the data frame are the effects for this data set;
some of the columns/variables of the data frame are used to identify the effect, other columns/variables
define how this effect is used in the estimation.



includeEffects 17

The function includeEffects operates as an interface setting the "include" column on selected
rows of the effects object, to the value requested (TRUE or FALSE). The selected effects must be indi-
cated by the arguments . . . , type, and (if necessary) interaction1 and interaction2. The names
interaction1 and interaction2 do not refer to interactions between effects, but to dependence
of effects on other variables in the data set. The arguments should identify the effects completely.
The short names must not be set between quotes, unless you use character=TRUE.

Note that the internal effect parameter has a default value which differs between effects. This can
be set by function setEffect. Also the value of myeff$initialValue can be set by this function.
The function setEffect operates on the effects object in a more detailed way, but applies to one
effect at the time.

Further information about Siena effects objects is given in the help page for getEffects.

A list of all effects available in a given effects object (e.g., myeff), including their names of depen-
dent variables, effect names, short names, and values of interaction1 and interaction2 (if any),
is obtained by executing effectsDocumentation(myeff).

The input names interaction1 and interaction2 do not themselves refer to created interactions,
but to dependence of the base effects on other variables in the data set. They are used to completely
identify the effects.

Value

An updated version of the input effects object, with the include, test, and fix columns for one or
more rows updated. Details of the rows altered will be printed.

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

getEffects, setEffect, includeInteraction, includeGMoMStatistics, updateSpecification,
print.sienaEffects, effectsDocumentation

Examples

mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mydata <- sienaDataCreate(mynet1, mybeh)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, balance)
myeff <- includeEffects(myeff, avAlt, name="mybeh", interaction1="mynet1")
myeff

https://www.stats.ox.ac.uk/~snijders/siena/


18 includeGMoMStatistics

includeGMoMStatistics Function to include GMoM statistics in a Siena model

Description

This function can be used for including one or more GMoM statistics by modifying a Siena effects
object.

Usage

includeGMoMStatistics(myeff, ..., include=TRUE, name=myeff$name[1],
interaction1="", interaction2="",
character=FALSE, verbose=TRUE)

Arguments

myeff a Siena effects object as created by getEffects

... short names to identify the GMoM statistics which should be included or ex-
cluded.

include Boolean; default TRUE, but can be switched to FALSE to turn off an effect.

name Name of dependent variable (network or behavior) for which statistics are being
included. Defaults to the first in the effects object.

interaction1 Name of siena object where needed to completely identify the effects e.g. co-
variate name or behavior variable name.

interaction2 Name of siena object where needed to completely identify the effects e.g. co-
variate name or behavior variable name.

character Boolean: are the statistic names character strings or not.

verbose Boolean: should the print of altered statistic be produced.

Details

The names interaction1 and interaction2 refer to the dependence of the GMoM statistics on
other variables in the data set. The arguments should identify the GMoM statistic completely. The
type does not have to be specified, as it is gmm for all GMoM statistiscs in the effects object.
The short names must not be set between quotes, unless you use character=TRUE.

The function includeGMoMStatistics operates as an interface setting the "include" column on
selected rows of the effects object, to the value requested (TRUE or FALSE).

Value

An updated version of the input effects object, with the include column for one or more rows
updated. Details of the rows altered will be printed.

Author(s)

Viviana Amati.



includeInteraction 19

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

getEffects, includeEffects, setEffect, includeInteraction, print.sienaEffects

Examples

mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mydata <- sienaDataCreate(mynet1, mybeh)
myeff <- getEffects(mydata)
myeff <- includeGMoMStatistics(myeff, egoX_gmm, interaction1="mybeh")
myeff

includeInteraction Function to create user-specified interactions for a Siena model.

Description

This function allows the user to include or exclude an interaction effect in a Siena effects object.

Usage

includeInteraction(myeff, ..., include = TRUE, name = myeff$name[1],
type = "eval", interaction1 = rep("", 3), interaction2 = rep("", 3),
fix=FALSE, test=FALSE, random=FALSE,
initialValue=0,
character = FALSE, verbose = TRUE)

Arguments

myeff a Siena effects object as created by getEffects, which is either an object of
class sienaEffects or sienaGroupEffects.

... 2 or 3 short names to identify the effects which should be interacted.

include Boolean. default TRUE, but can be switched to FALSE to turn off an interaction.

name Name of dependent variable (network or behavior) for which interactions are
being defined. Defaults to the first in the effects object.

type Type of effects to be interacted.

interaction1 Vector of Siena objects where needed to completely identify the effect e.g. co-
variate name or behavior variable name. Trailing blanks may be omitted.

interaction2 Vector of siena objects where needed to completely identify the effect e.g. co-
variate name or behavior variable name. Trailing blanks may be omitted.

fix Boolean. Are the effects to be fixed at the value stored in myeff$initialValue
or not.

https://www.stats.ox.ac.uk/~snijders/siena/


20 includeInteraction

test Boolean. Are the effects to be tested or not (requires fix).

random For specifying that the interaction effect will vary randomly; not relevant for
RSiena at this moment. Boolean required. Default FALSE.

initialValue Initial value for estimation. Default 0.

character Boolean: are the effect names character strings or not.

verbose Boolean: should the print of altered effects be produced.

Details

The details provided should uniquely identify two or three effects. If so, an interaction effect will
be created and included or not in the model.
Whether interactions between two or three given effects can be created depends on their interactionType
(which can be, for dependent network variables, empty, ego, or dyadic; and for dependent behav-
ioral variables, empty or OK). Consult the section on Interaction Effects in the manual for this. The
interactionType is shown in the list of effects obtained from the function effectsDocumentation.
The short names must not be set between quotes, unless you use character=TRUE.
From the point of view of model building it is usually advisable, when including an interaction
effect in a model, also to include the corresponding main effects. This is however not enforced by
includeInteraction.

As from version 1.3.24, effects object have a "version" attribute. Effects objects including inter-
action effects are not necessarily compatible between versions of RSiena. Therefore it is recom-
mended to create such effects objects again when changing to a new version of RSiena. If an effects
object including any interaction effects is used from an old version of RSiena, this will lead to a
warning when running siena07.

An interaction effect does not have its own internal effect parameter. The internal effect parameters
of the interacting main effects are used, whether or not these are included in the model. This implies
that if an interaction effect is included but not the corresponding main effects, or not all of them,
then nevertheless the internal effect parameters as specified in the effects object are used for the
interaction. These can be set using function setEffect with the desired value of parameter and
(in this case) include=FALSE or fix=TRUE, initialValue=0.
If an internal effect parameter is changed for one of the main effects after the last call of includeInteraction
for a given interaction effect, this will not be visible in the name of the interaction effect when the
effects object is printed. However, the correct value of the internal effect parameter will be used by
siena07.
The values of the internal effect parameters can be checked for a sienaFit object ans produced
by siena07 by looking at ans$effects, which is the requested effects object to which the main
effects of the user-defined interactions were added, if they were not included.

Interaction effects are constructed from effects with shortName unspInt (for networks) and behUnspInt
(for behavior) by specifying their elements effect1 and effect2, and possibly effect3. The
shortName is not altered by this function.

The number of possible user-specified interaction effects is limited by the parameters nintn (for de-
pendent network variables) and behNintn (for dependent behavior variables) in the call of getEffects,
which determine the numbers of effects with shortNames unspInt and behUnspInt.



includeInteraction 21

The input names interaction1 and interaction2 do not themselves refer to created interactions,
but to dependence of the base effects on other variables in the data set. They are used to completely
identify the effects.

Further information about Siena effects objects is given in the help page for getEffects.

A list of all effects in a given effects object (e.g., myeff), including their names of dependent
variables, effect names, short names, and values of interaction1 and interaction2 (if any), is obtained
by executing effectsDocumentation(myeff).

Value

An updated version of the input effects object; if include, containing the interaction effect between
"effect1" and "effect2" and possibly "effect3"; if not, without this interaction effect. The shortName
of the interaction effect is "unspInt" for network effects and "behUnspInt" for behavior effects.
If verbose=TRUE, the interacting effects and the interaction effect will be printed, with their row
numbers in the effects object.

Author(s)

Ruth Ripley, Tom Snijders

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

getEffects, setEffect, includeEffects, effectsDocumentation

Examples

mynet <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
alc <- varCovar(s50a)
mydata <- sienaDataCreate(mynet, alc)
myeff <- getEffects(mydata)
myeff <- includeInteraction(myeff, recip, inPop)
myeff <- includeEffects(myeff, egoX, altX, simX, interaction1="alc")
myeff <- includeInteraction(myeff, recip, simX, interaction1=c("", "alc"))
myeff <- setEffect(myeff, gwespFF, parameter=20)
myeff <- includeInteraction(myeff, recip, gwespFF)
myeff
(myeff <- setEffect(myeff, gwespFF, parameter=69, include=FALSE))
myeff <- includeInteraction(myeff, recip, gwespFF)
myeff

https://www.stats.ox.ac.uk/~snijders/siena/


22 includeTimeDummy

includeTimeDummy Function to include time dummy effects in a Siena model

Description

This function specifies time heterogeneity for selected effects in a Siena model, by interacting them
with time dummies, without explicitly using time-dependent covariates.

Usage

includeTimeDummy(myeff, ..., timeDummy="all", name=myeff$name[1], type="eval",
interaction1="", interaction2="", include=TRUE, character=FALSE)

Arguments

myeff A Siena effects object as created by getEffects.

... Short names to identify the effects for which interactions with time dummies
should be included or excluded. This function cannot be used for regular inter-
action effects.

timeDummy Character string. Either "all" or the periods for which to create dummies (from
1 to (number of waves - 1)), space delimited.

include Boolean. default TRUE, but can be switched to FALSE to turn off an effect.

name Name of dependent network or behavioral variable for which effects are being
included. Defaults to the first in the effects object.

type Type of dummy effects to be interacted.

interaction1 Name of variable where needed to completely identify the effects e.g. covariate
name or behavior variable name.

interaction2 Name of variable where needed to completely identify the effects e.g. covariate
name or behavior variable name.

character Boolean: are the effect names character strings or not

Details

The arguments (. . . , name, interaction1, interaction2) should identify the effects completely.
See includeEffects and effectsDocumentation for more information about this.

This function operates by setting the timeDummy column on selected rows of a Siena effects ob-
ject, thereby specifying interactions of the specified effect or effects with dummy variables for the
specified periods. The timeDummy column of myeff will be set to include the values requested if
include=TRUE, and to exclude them for include=FALSE.

For an effects object in which the timeDummy column of some of the included effects includes
some or all period numbers, interactions of those effects with ego effects of time dummies for the
indicated periods will also be estimated by siena07. For the outdegree effect this is just the ego
effect of the time dummies. If . . . does not include the outdegree effect, then still this ego effect will
be created, but its parameter will be fixed to 0.



includeTimeDummy 23

An alternative to the use of includeTimeDummy is to define time-dependent actor covariates (dummy
variables or other functions of wave number that are the same for all actors), include these in the
data set through sienaDataCreate, and include interactions of other effects with ego effects of
these time-dependent actor covariates by includeInteraction. This is illustrated in an example
in the help file for sienaTimeTest. Using includeTimeDummy is easier; on the other hand, using
self-defined interactions with time-dependent variables gives more control (e.g., it will allow to
specify linear time dependence and test time heterogeneity for interaction effects).

Value

An updated version of myeff, with the timeDummy column for one or more rows updated. Details
of the rows altered will be printed.

Author(s)

Josh Lospinoso

References

See https://www.stats.ox.ac.uk/~snijders/siena/ for general information on RSiena.

See Also

sienaTimeTest, getEffects, includeEffects, effectsDocumentation.

Examples

## Not run:
## Estimate a restricted model
myalgorithm <- sienaAlgorithmCreate(nsub=4, n3=1000)
mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, balance)
myeff
(ans <- siena07(myalgorithm, data=mydata, effects=myeff))

## Conduct the score type test to assess whether heterogeneity is present.
tt <- sienaTimeTest(ans)
summary(tt)

## Suppose that we wish to include a time dummy.
## Since there are three waves, the number of periods is two.
## This means that only one time dummy can be included for
## the interactions. The default is for period 2;
## an equivalent model, but with different parameters
## (that can be transformed into each other) is obtained
## when the dummies are defined for period 1.
myeff <- includeTimeDummy(myeff, density, recip, timeDummy="2")
myeff # Note the \code{timeDummy} column.
(ans2 <- siena07(myalgorithm, data=mydata, effects=myeff))

https://www.stats.ox.ac.uk/~snijders/siena/


24 iwlsm

## Re-assess the time heterogeneity
tt2 <- sienaTimeTest(ans2)
summary(tt2)

## And so on..

## End(Not run)

## A demonstration of RateX heterogeneity.
## Note that rate interactions are not implemented in general,
## but they are for Rate x coCovar.
## Not run:
myalgorithm <- sienaAlgorithmCreate(nsub=4, n3=1000)
mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
myccov <- coCovar(s50a[,1])
mydata <- sienaDataCreate(mynet1, myccov)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, balance)
myeff <- includeTimeDummy(myeff, RateX, type="rate",

interaction1="myccov")
myeff
(ans <- siena07(myalgorithm, data=mydata, effects=myeff))

## End(Not run)

iwlsm Function to fit an iterated weighted least squares model.

Description

Fits an iterated weighted least squares model.

Usage

iwlsm(x, ...)

## S3 method for class 'formula'
iwlsm(formula, data, weights, ses, ..., subset, na.action,

method = c("M", "MM", "model.frame"),
wt.method = c("inv.var", "case"),
model = TRUE, x.ret = TRUE, y.ret = FALSE, contrasts = NULL)

## Default S3 method:
iwlsm(x, y, weights, ses, ..., w = rep(1/nrow(x), nrow(x)),

init = "ls", psi = psi.iwlsm,
scale.est = c("MAD", "Huber", "proposal 2"), k2 = 1.345,
method = c("M", "MM"), wt.method = c("inv.var", "case"),
maxit = 20, acc = 1e-4, test.vec = "resid", lqs.control = NULL)

psi.iwlsm(u, k, deriv = 0, w, sj2, hh)



iwlsm 25

Arguments

formula a formula of the form y ~ x1 + x2 + ....
data data frame from which variables specified in formula are preferentially to be

taken.
weights a vector of prior weights for each case.
subset An index vector specifying the cases to be used in fitting.
ses Estimated variance of the responses. Will be paseed to psi as sj2
na.action A function to specify the action to be taken if NAs are found. The ‘factory-fresh’

default action in R is na.omit, and can be changed by options(na.action=).
x a matrix or data frame containing the explanatory variables.
y the response: a vector of length the number of rows of x.
method Must be "M". (argument not used here).
wt.method are the weights case weights (giving the relative importance of case, so a weight

of 2 means there are two of these) or the inverse of the variances, so a weight of
two means this error is half as variable? This will not work at present.

model should the model frame be returned in the object?
x.ret should the model matrix be returned in the object?
y.ret should the response be returned in the object?
contrasts optional contrast specifications: se lm.
w (optional) initial down-weighting for each case. Will not work at present.
init (optional) initial values for the coefficients OR a method to find initial values

OR the result of a fit with a coef component. Known methods are "ls" (the
default) for an initial least-squares fit using weights w*weights, and "lts" for
an unweighted least-trimmed squares fit with 200 samples. Probably not func-
tioning.

psi the psi function is specified by this argument. It must give (possibly by name) a
function g(x, ..., deriv, w) that for deriv=0 returns psi(x)/x and for deriv=1
returns some value. Extra arguments may be passed in via ....

scale.est method of scale estimation: re-scaled MAD of the residuals (default) or Huber"s
proposal 2 (which can be selected by either "Huber" or "proposal 2").

k2 tuning constant used for Huber proposal 2 scale estimation.
maxit the limit on the number of IWLS iterations.
acc the accuracy for the stopping criterion.
test.vec the stopping criterion is based on changes in this vector.
... additional arguments to be passed to iwlsm.default or to the psi function.
lqs.control An optional list of control values for lqs.
u numeric vector of evaluation points.
k tuning constant. Not used.
deriv 0 or 1: compute values of the psi function or of its first derivative. (Latter not

used).
sj2 Estimated variance of the responses
hh Diagonal values of the hat matrix



26 iwlsm

Details

This function is very slightly adapted from rlm in packages MASS. It alternates between weighted
least squares and estimation of variance on the basis of a common variance. The function psi.iwlsm
calculates the weights for the next iteration. Used by siena08 to combine estimates from different
sienaFits.

Value

An object of class "iwlsm" inheriting from "lm". Note that the df.residual component is deliber-
ately set to NA to avoid inappropriate estimation of the residual scale from the residual mean square
by "lm" methods.

The additional components not in an lm object are

s the robust scale estimate used

w the weights used in the IWLS process

psi the psi function with parameters substituted

conv the convergence criteria at each iteration

converged did the IWLS converge?

wresid a working residual, weighted for "inv.var" weights only.

Note

The function has been changed as little as possible, but has only been used with default arguments.
The other options have been retained just in case they may prove useful.

Author(s)

Ruth Ripley

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
See also https://www.stats.ox.ac.uk/~snijders/siena/

See Also

siena08, sienaMeta, sienaFit

Examples

## Not run:
##not enough data here for a sensible example, but shows the idea.
myalgorithm <- sienaAlgorithmCreate(nsub=2, n3=100)
mynet1 <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)))
mynet2 <- sienaDependent(array(c(s502, s503), dim=c(50, 50, 2)))
mydata1 <- sienaDataCreate(mynet1)
mydata2 <- sienaDataCreate(mynet2)
myeff1 <- getEffects(mydata1)

https://www.stats.ox.ac.uk/~snijders/siena/


n3401 27

myeff2 <- getEffects(mydata2)
myeff1 <- setEffect(myeff1, transTrip, fix=TRUE, test=TRUE)
myeff2 <- setEffect(myeff2, transTrip, fix=TRUE, test=TRUE)
myeff1 <- setEffect(myeff1, cycle3, fix=TRUE, test=TRUE)
myeff2 <- setEffect(myeff2, cycle3, fix=TRUE, test=TRUE)
ans1 <- siena07(myalgorithm, data=mydata1, effects=myeff1, batch=TRUE)
ans2 <- siena07(myalgorithm, data=mydata2, effects=myeff2, batch=TRUE)
meta <- siena08(ans1, ans2)
metadf <- split(meta$thetadf, meta$thetadf$effects)[[1]]
metalm <- iwlsm(theta ~ tconv, metadf, ses=se^2)

## End(Not run)

n3401 Network data: excerpt from "Dutch Social Behavior Data Set" of Chris
Baerveldt.

Description

Matrices N3401, N3403, N3404, N3406, and HN3401, HN3403, HN3404, HN3406 are two waves
of networks for four schools (numbered 1, 3, 4, 6).

Format

Adjacency matrices for the network at two time points. The matrices with name N... are the first
wave, those with name HN... are the second wave.

There is a tie from pupil i to pupil j if i says that he/she receives and/or gives emotional support
from/to pupil j. The data are part of a larger data set (see source below) and were collected under
the direction of Chris Baerveldt.

Source

https://www.stats.ox.ac.uk/~snijders/siena/CB_data.zip

References

Houtzager, B. and Baerveldt, C. (1999), Just like Normal. A Social Network Study of the Relation
between Petty Crime and the Intimacy of Adolescent Friendships. Social Behavior and Personality
27, 177–192.

Snijders, Tom A.B, and Baerveldt, C. (2003), A Multilevel Network Study of the Effects of Delin-
quent Behavior on Friendship Evolution. Journal of Mathematical Sociology 27, 123–151.

See https://www.stats.ox.ac.uk/~snijders/siena/BaerveldtData.html

Examples

mynet <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
mydata <- sienaDataCreate(mynet)

https://www.stats.ox.ac.uk/~snijders/siena/CB_data.zip
https://www.stats.ox.ac.uk/~snijders/siena/BaerveldtData.html


28 plot.sienaTimeTest

plot.sienaTimeTest Functions to plot assessment of time heterogeneity of parameters

Description

Plot method for sienaTimeTest objects.

Usage

## S3 method for class 'sienaTimeTest'
plot(x, pairwise=FALSE, effects,

scale=.2, plevels=c(.1, .05, .025), ...)

Arguments

x A sienaTimeTest object returned by sienaTimeTest.

pairwise A Boolean value corresponding to whether the user would like a pairwise plot of
the simulated statistics to assess correlation among the effects (pairwise=TRUE),
or a plot of the estimates across waves in order to assess graphically the results
of the score type test.

effects A vector of integers corresponding to the indices given in the sienaTimeTest
output for effects which are to be plotted.

scale A positive number corresponding to the number of standard deviations on one
step estimates to use for computing the maximum and minimum of the plotting
range. We recommend experimenting with this number when the y-axes of the
plots are not satisfactory. Smaller numbers shrink the axes.

plevels A list of three decimals indicating the gradients at which to draw the confidence
interval bars.

... For extra arguments. The Lattice parameter layout can be used to control the
layout of the graphs.

Details

The pairwise=TRUE plot may be used to assess whether effects are highly correlated. This infor-
mation may be important when considering forward-model selection, since highly correlated effects
may have highly correlated one-step estimates, particularly since the individual score type tests are
not orthogonalized against the scores and deviations of yet-unestimated dummies. For example,
reciprocity and outdegree may have highly correlated statistics as indicated by a strong, positive
correlation coefficient. When considering whether to include dummy terms, it may be a good idea
to include, e.g., outdegree, estimate the parameter, and see whether reciprocity dummies remain
significant after method of moments estimation of the updated model–as opposed to including both
outdegree and reciprocity.

The pairwise=FALSE plot displays the most of the information garnered from sienaTimeTest in
a graphical fashion. For each effect, the method of moments parameter estimate for the base period
(i.e. wave 1) is given as a blue, horizontal reference line. One step estimates are given for all of



plot.sienaTimeTest 29

the parameters by dots at each wave. The dots are colored black if the parameter has been included
in the model already (i.e. has been estimated via method of moments), or red if they have not
been included. Confidence intervals are given based on pivots given at pvalues. Evidence of time
heterogeneity is suggested by points with confidence intervals not overlapping with the base period.

Value

None

Author(s)

Josh Lospinoso

References

See https://www.stats.ox.ac.uk/~snijders/siena/ for general information on RSiena.

See Also

siena07, sienaTimeTest, xyplot

Examples

## Not run:
myalgorithm <- sienaAlgorithmCreate(nsub=2, n3=500)
# It makes no sense to put together the following data set,
# but just for demonstration:
mynet1 <- sienaDependent(array(c(s501, s502, s503, s501, s503, s502), dim=c(50, 50, 6)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip)
myeff <- includeTimeDummy(myeff, density, timeDummy="all")
myeff <- includeTimeDummy(myeff, recip, timeDummy="2,3,5")
myeff <- includeTimeDummy(myeff, transTrip, timeDummy="2,3")
(ansp <- siena07(myalgorithm, data=mydata, effects=myeff))
ttp <- sienaTimeTest(ansp)
summary(ttp)

## Pairwise plots show
plot(ttp, pairwise=TRUE)

## Time test plots show
plot(ttp, effects=1:3) ## default layout
plot(ttp, effects=1:3, layout=c(3,1))

## End(Not run)

https://www.stats.ox.ac.uk/~snijders/siena/


30 print.sienaEffects

print.sienaEffects Print methods for Siena effects objects

Description

Prints the major columns of the effects object. Or all, with any non-atomic columns listed separately.

Usage

## S3 method for class 'sienaEffects'
print(x, fileName = NULL, includeOnly=TRUE,

expandDummies = FALSE, includeRandoms = FALSE, dropRates=FALSE,
includeShortNames=FALSE, ...)

## S3 method for class 'sienaEffects'
summary(object, fileName = NULL,

includeOnly=TRUE, expandDummies = FALSE, ...)
## S3 method for class 'summary.sienaEffects'
print(x, fileName = NULL, ...)

Arguments

object An object of class sienaEffects.

x An object of class sienaEffects or summary.sienaEffects as appropriate.

fileName Character string denoting file name if file output desired.

includeOnly Boolean. If TRUE, only effects with the include flag TRUE will be printed.

expandDummies Interpret the timeDummy column and show any effects which would be added by
sienaTimeFix.

includeRandoms Boolean. If TRUE, also the randomEffects column will be printed.
includeShortNames

Boolean. If TRUE, also the shortName column will be printed.

dropRates Boolean. If TRUE, do not print the rows for basic rate effects.

... For extra arguments (none used at present).

Value

The function print.sienaEffects prints details of the main columns of the selected rows of the
effects object.
If the effects object includes statistics for the Generalized Method of Moments (GMoM), as in-
cluded by function includeGMoMStatistics and for which type=gmm, the print consists of two
parts: the first consists of the included effects for the probability model, the second of the statistics
used for GMoM estimation.

The function summary.sienaEffects checks the rows for valid printing via print.data.frame
and excludes any that will fail. The OK columns are printed first, followed by any others.

Output from either can be directed to a file by using the argument filename.



print.sienaMeta 31

Author(s)

Ruth Ripley, modifications by Tom Snijders and Viviana Amati.

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaEffects, getEffects, includeEffects, includeGMoMStatistics, sienaTimeTest, effectsDocumentation

Examples

mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mycovar <- coCovar(rnorm(50))
mydyadcovar <- coDyadCovar(matrix(as.numeric(rnorm(2500) > 2), nrow=50))
mydata <- sienaDataCreate(mynet1, mybeh, mycovar, mydyadcovar)
myeff <- getEffects(mydata)
myeff
summary(myeff)

print.sienaMeta Methods for processing sienaMeta objects

Description

print, summary, and plot methods for sienaMeta objects; and a function to write a LaTeX table.

Usage

## S3 method for class 'sienaMeta'
print(x, file=FALSE, reportEstimates=FALSE, ...)

## S3 method for class 'sienaMeta'
summary(object, file=FALSE, extra=TRUE, ...)

## S3 method for class 'summary.sienaMeta'
print(x, file=FALSE, extra=TRUE, ...)

## S3 method for class 'sienaMeta'
plot(x, ..., which = 1:length(x$theta),

useBound=TRUE, layout = c(2,2))
meta.table(x, d=3, option=2,

filename=paste(deparse(substitute(x)),'_global.tex',sep=""), align=TRUE)

https://www.stats.ox.ac.uk/~snijders/siena/


32 print.sienaMeta

Arguments

object An object of class sienaMeta.

x An object of class sienaMeta, or summary.sienaMeta as appropriate.

file Boolean: if TRUE, sends output to file named x$projname.txt. If FALSE,
output is to the terminal.

reportEstimates

Boolean: whether to report all estimates and standard errors.

extra Boolean: if TRUE, prints more information.

which Set of effects contained in the plot (given by sequence numbers).

useBound Boolean: whether to restict plotted symbols to the bound used in the call of
sienaMeta.

layout Vector giving number of rows and columns in the arrangement of the several
panels in a rectangular array, possibly spanning multiple pages.

d Number of decimals to be used in table.

option 1: results without normality assumptions; 2: results with normality assumptions,
with confidence intervals; 3: results with normality assumptions, with standard
errors.

filename filename for output; if "", printed to the console.

align Whether to align numbers at the decimal point.

... For extra arguments (none used at present).

Value

The function print.sienaMeta prints details of the merged estimates of the meta-analysis carried
out by siena08, with test statistics. See the help page for siena08 for what is produced by this
function.

The function summary.sienaMeta prints details as for the print method, but also details of the
sienaFit objects included.

Output from either can be directed to a file by using the argument file. It will be appended to
any existing file of the same name: projname.txt where projname is the value of the argument to
siena08.

The function meta.table writes a combined table of results for all parameters to a LaTeX file in (as
default) the current working directory. This table is a more compact version of the results presented
by print.sienaMeta.

The function plot.sienaMeta plots estimates against standard errors for each effect, with reference
lines added at the two-sided significance threshold 0.05. It returns an object of class trellis, of
the lattice package. Effects for which a score test was requested are not plotted.
Another funnel plot, not using siena08, is available as funnelPlot.

Author(s)

Ruth Ripley, Tom Snijders



print.sienaMeta 33

References

Snijders, T.A.B, and Baerveldt, C. (2003), A Multilevel Network Study of the Effects of Delinquent
Behavior on Friendship Evolution. Journal of Mathematical Sociology 27, 123–151.

See also the Siena manual and https://www.stats.ox.ac.uk/~snijders/siena/

See Also

siena08

Examples

## Not run:
# A meta-analysis for three groups does not make much sense
# for generalizing to a population of networks,
# but it the Fisher combinations of p-values are meaningful.
# But using three groups shows the idea.

Group1 <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
Group3 <- sienaDependent(array(c(N3403, HN3403), dim=c(37, 37, 2)))
Group4 <- sienaDependent(array(c(N3404, HN3404), dim=c(33, 33, 2)))
dataset.1 <- sienaDataCreate(Friends = Group1)
dataset.3 <- sienaDataCreate(Friends = Group3)
dataset.4 <- sienaDataCreate(Friends = Group4)
OneAlgorithm <- sienaAlgorithmCreate(projname = "SingleGroups")
effects.1 <- getEffects(dataset.1)
effects.3 <- getEffects(dataset.3)
effects.4 <- getEffects(dataset.4)
effects.1 <- includeEffects(effects.1, transTrip)
effects.1 <- setEffect(effects.1, transRecTrip, fix=TRUE, test=TRUE)
effects.3 <- includeEffects(effects.3, transTrip)
effects.3 <- setEffect(effects.3, transRecTrip, fix=TRUE, test=TRUE)
effects.4 <- includeEffects(effects.4, transTrip)
effects.4 <- setEffect(effects.4, transRecTrip, fix=TRUE, test=TRUE)
ans.1 <- siena07(OneAlgorithm, data=dataset.1, effects=effects.1, batch=TRUE)
ans.3 <- siena07(OneAlgorithm, data=dataset.3, effects=effects.3, batch=TRUE)
ans.4 <- siena07(OneAlgorithm, data=dataset.4, effects=effects.4, batch=TRUE)
ans.1
ans.3
ans.4
meta <- siena08(ans.1, ans.3, ans.4)
print(meta, reportEstimates=FALSE)
print(meta)
summary(meta)
# For specifically presenting the Fisher combinations:
# First determine the number of estimated effects:
(neff <- sum(sapply(meta, function(x){ifelse(is.list(x),

!is.null(x$cjplus),FALSE)})))
Fishers <- t(sapply(1:neff,

function(i){c(meta[[i]]$cjplus, meta[[i]]$cjminus,
meta[[i]]$cjplusp, meta[[i]]$cjminusp, 2*meta[[i]]$n1 )}))

Fishers <- as.data.frame(Fishers, row.names=names(meta)[1:neff])

https://www.stats.ox.ac.uk/~snijders/siena/


34 print.sienaTest

names(Fishers) <- c('Fplus', 'Fminus', 'pplus', 'pminus', 'df')
Fishers
# For plotting:
plo <- plot(meta, layout = c(3,1))
plo
plo[3]
# Show effects of bound (bounding at 0.4 is not reasonable, just for example)
meta <- siena08(ans.1, ans.3, ans.4, bound=0.4)
plot(meta, which=c(2,3), layout=c(2,1))
plot(meta, which=c(2,3), layout=c(2,1), useBound=FALSE)
meta.table(meta, option=3, file='')

## End(Not run)

print.sienaTest Print method for Wald and score tests for RSiena results

Description

This method prints Wald-type and score-type tests for results estimated by siena07.

Usage

## S3 method for class 'sienaTest'
print(x, ...)

Arguments

x An object of type sienaTest, produced by Wald.RSiena, Multipar.RSiena,
or score.Test.

... Extra arguments (not used at present).

Details

The functions Wald.RSiena, Multipar.RSiena, and score.Test produce an object of type sienaTest.
These can be printed by this method.

Value

An object of type sienaTest.

Author(s)

Tom Snijders

See Also

siena07, Wald.RSiena, Multipar.RSiena, score.Test



print01Report 35

Examples

mynet <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)))
mydata <- sienaDataCreate(mynet)
myeff <- getEffects(mydata)
myalgorithm <- sienaAlgorithmCreate(nsub=1, n3=40, seed=123, projname=NULL)
# nsub=1 and n3=40 is used here for having a brief computation,
# not for practice.
myeff <- includeEffects(myeff, transTrip, transTies)
myeff <- includeEffects(myeff, outAct, outPop, fix=TRUE, test=TRUE)
(ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE))
mprs <- Multipar.RSiena(ans, 3, 4)
print(mprs)

print01Report Function to produce the Siena01 report from R objects

Description

Prints a report of a Siena data object and its default effects.

Usage

print01Report(data, modelname = "Siena", getDocumentation=FALSE)

Arguments

data a Siena data object

modelname Character string used to name the output file "modelname.txt"
getDocumentation

Flag to allow documentation of internal functions, not for use by users.

Details

First deletes any file of the name "modelname.txt", then prints a new one.

Value

No value returned.

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

https://www.stats.ox.ac.uk/~snijders/siena/


36 s50

Examples

mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mydata <- sienaDataCreate(mynet1)
## Not run:
print01Report(mydata, modelname="mydescription")

## End(Not run)

s50 Network data: excerpt from "Teenage Friends and Lifestyle Study"
data.

Description

An excerpt of the network, alcohol consumption, and smoking data for 50 randomly chosen girls
from the Teenage Friends and Lifestyle Study data set. Useful as a small example of network and
behaviour, for which models can be fitted quickly, and for which there are no missing values.

Format

Adjacency matrix for the network at time points 1, 2, 3; 50 by 3 matrices of alcohol consumption
and smoking data for the three time points.

Source

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip

References

West, P. and Sweeting, H. (1995), Background Rationale and Design of the West of Scotland 11-16
Study. Working Paper No. 52. MRC Medical Sociology Unit Glasgow.

See https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm

See Also

s501, s502, s503, s50a, s50s

Examples

mynet <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mydata <- sienaDataCreate(mynet, mybeh)
mydata

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip
https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm


s501 37

s501 Network 1 data: excerpt from "Teenage Friends and Lifestyle Study"
data.

Description

First timepoint network data from an excerpt of the network, alcohol consumption, and smoking
data for 50 randomly chosen girls from the Teenage Friends and Lifestyle Study data set. Useful as
a small example of network and behaviour, for which models can be fitted quickly, and for which
there are no missing values.

Format

The adjacency matrix for the network at time point 1.

Source

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip

References

West, P. and Sweeting, H. (1995), Background Rationale and Design of the West of Scotland 11-16
Study. Working Paper No. 52. MRC Medical Sociology Unit Glasgow.

See https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm

See Also

s502, s503, s50a, s50s

s502 Network 2 data: excerpt from "Teenage Friends and Lifestyle Study"
data.

Description

Second timepoint network data from an excerpt of the network, alcohol consumption, and smoking
data for 50 randomly chosen girls from the Teenage Friends and Lifestyle Study data set. Useful as
a small example of network and behaviour, for which models can be fitted quickly, and for which
there are no missing values.

Format

The adjacency matrix for the network at time point 2.

Source

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip
https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip


38 s503

References

West, P. and Sweeting, H. (1995), Background Rationale and Design of the West of Scotland 11-16
Study. Working Paper No. 52. MRC Medical Sociology Unit Glasgow.

See https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm

See Also

s501, s503, s50a, s50s, s50

s503 Network 3 data: excerpt from "Teenage Friends and Lifestyle Study"
data.

Description

Second timepoint network data from an excerpt of the network, alcohol consumption, and smoking
data for 50 randomly chosen girls from the Teenage Friends and Lifestyle Study data set. Useful as
a small example of network and behaviour, for which models can be fitted quickly, and for which
there are no missing values.

Format

Adjacency matrix for the network at time point 3.

Source

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip

References

West, P. and Sweeting, H. (1995), Background Rationale and Design of the West of Scotland 11-16
Study. Working Paper No. 52. MRC Medical Sociology Unit Glasgow.

See https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm

See Also

s501, s502, s50a, s50s

Examples

mynet <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mydata <- sienaDataCreate(mynet, mybeh)

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip
https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm


s50a 39

s50a Alcohol use data: excerpt from "Teenage Friends and Lifestyle Study"
data

Description

Alcohol use data from an excerpt of 50 girls from an excerpt of the network, alcohol consumption,
and smoking data for 50 randomly chosen girls from the Teenage Friends and Lifestyle Study data
set. Useful as a small example of network and behaviour, for which models can be fitted quickly,
and for which there are no missing values.

Format

A matrix of variables relating to the use of alcohol for the actors in the network. Three columns,
one for each time point. Coding is 1–5, high values indicating higher consumption.

Source

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip

References

West, P. and Sweeting, H. (1995), Background Rationale and Design of the West of Scotland 11-16
Study. Working Paper No. 52. MRC Medical Sociology Unit Glasgow.

See https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm

See Also

s501, s502, s503, s50s

Examples

mynet <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mydata <- sienaDataCreate(mynet, mybeh)
mydata

s50s Smoking data: excerpt from "Teenage Friends and Lifestyle Study"
data

Description

Smoking data from an excerpt of the network, alcohol consumption, and smoking data for 50 ran-
domly chosen girls from the Teenage Friends and Lifestyle Study data set. Useful as a small exam-
ple of network and behaviour, for which models can be fitted quickly, and for which there are no
missing values.

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip
https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm


40 setEffect

Format

A matrix of variables relating to the smoking habits for the actors in the network. Three columns,
one for each time point. Coding is 1–3: 1 = no smoking, 2 = moderate smoking, 3 = serious
smoking.

Source

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip

References

West, P. and Sweeting, H. (1995), Background Rationale and Design of the West of Scotland 11-16
Study. Working Paper No. 52. MRC Medical Sociology Unit Glasgow.

See https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm

See Also

s501, s502, s503, s50a

Examples

mynet <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
myvar <- varCovar(s50s)
mydata <- sienaDataCreate(mynet, myvar)
mydata

setEffect Function to set various columns in an effects object in a Siena model.

Description

This function provides an interface to change various columns of a selected row of a Siena effects
object.

Usage

setEffect(myeff, shortName, parameter = NULL,
fix = FALSE, test = FALSE, random=FALSE, initialValue = 0, timeDummy = ",", include = TRUE,
name = myeff$name[1], type = "eval", interaction1 = "",
interaction2 = "", effect1=0, effect2=0, effect3=0,
period=1, group=1, character=FALSE, verbose = TRUE)

https://www.stats.ox.ac.uk/~snijders/siena/s50_data.zip
https://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm


setEffect 41

Arguments

myeff a Siena effects object as created by getEffects

shortName A short name (all with or all without quotes) to identify the effect which should
be changed.

parameter Value of internal effect parameter. If NULL, no change is made.

fix For fixing effects. Boolean required. Default FALSE.

test For testing effects by score-type tests. Boolean required. Default FALSE.

random For specifying that effects will vary randomly; used only in function sienaBayes
in package multiSiena. Not relevant for RSiena at this moment. Boolean re-
quired. Default FALSE.

initialValue Initial value for estimation. Default 0.

timeDummy string: Comma delimited string of which periods to dummy. Alternatively, use
includeTimeDummy.

include Boolean. default TRUE, but can be switched to FALSE to turn off an effect.

name Name of dependent variable (network or behavior) for which effects are being
modified. Defaults to the first in the effects object.

type Character string indicating the type of the effect to be changed : currently "rate",
"eval", "endow", or "creation". Default "eval".

interaction1 Name of siena object where needed to completely identify the effect e.g. covari-
ate name or behavior variable name.

interaction2 Name of siena object where needed to completely identify the effect e.g. covari-
ate name or behavior variable name.

effect1 Only for shortName=unspInt, behUnspInt or contUnspInt, which means this
is a user-defined interaction effect: effect1 is the row number in myeff of the
first component of the interaction effect.

effect2 See effect1: second component of interaction effect.

effect3 See effect1: third component of interaction effect.

period Number of period if basic rate. Use numbering within groups.

group Number of group if basic rate. Only relevant for sienaGroup data sets.

character Boolean: whether the short name is a character string.

verbose Boolean: should the print of altered effects be produced.

Details

Recall from the help page for getEffects that a Siena effects object (class sienaEffects or
sienaGroupEffects) is a data.frame; the rows in the data frame are the effects for this data set;
some of the columns/variables of the data frame are used to identify the effect, other columns/variables
define how this effect is used in the estimation.
The function includeEffects can operate on several effects simultaneously, but in a less detailed
way. The main use of setEffect is that it can change not only the value of the column include,
but also those of initialValue and parm. The arguments shortName, name, type, interaction1,
interaction2, effect1, effect2, effect3, period, and group should identify one effect com-
pletely. (Not all of them are needed; see getEffects.)



42 setEffect

The call of setEffect will set, for this effect, the column elements of the resulting effects object
for parm, fix, test, randomEffects, initialValue, timeDummy, and include to the values re-
quested.
The shortName must not be set between quotes, unless you use character=TRUE.

The input names interaction1 and interaction2 do not themselves refer to created interactions,
but to dependence of the base effects on other variables in the data set. They are used to completely
identify the effects.

If a value for parameter is given, the occurrences of # in the original effect and function names are
replaced by this value. If a value for parameter is not given, the default value of the internal effect
parameter of this effect is used.

Value

An object of class sienaEffects or sienaGroupEffects. This will be an updated version of
the input effects object, with one row updated. Details of the row altered will be printed, unless
verbose=FALSE.

Author(s)

Ruth Ripley, Tom Snijders

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

getEffects, includeEffects, includeInteraction, includeGMoMStatistics, updateSpecification,
print.sienaEffects, effectsDocumentation.

Examples

mynet <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mydata <- sienaDataCreate(mynet, mybeh)
myeff <- getEffects(mydata)
myeff <- setEffect(myeff, gwespFF)
# Specify an effect parameter:
myeff <- setEffect(myeff, outTrunc, parameter=1)
myeff
# Set the initial rate parameter for one period:
myeff <- setEffect(myeff, Rate, initialValue=1.5, name="mybeh",

type="rate", period=2)
myeff

https://www.stats.ox.ac.uk/~snijders/siena/


siena07 43

siena07 Function to estimate parameters in a Siena model

Description

Estimates parameters in a Siena model using Method of Moments, based on direct simulation, con-
ditional or otherwise; or using Generalized Method of Moments; or using Maximum Likelihood by
MCMC simulation. Estimation is done using a Robbins-Monro algorithm. Note that the data and
particular model to be used must be passed in using named arguments as the ..., and the specifi-
cation for the algorithm must be passed on as x, which is a sienaAlgorithm object as produced by
sienaAlgorithmCreate (see examples).

Usage

siena07(x, batch=FALSE, verbose=FALSE, silent=FALSE,
useCluster=FALSE, nbrNodes=2,
thetaValues = NULL,
returnThetas = FALSE,
thetaBound = 50,
targets = NULL,
initC=TRUE,
clusterString=rep("localhost", nbrNodes), tt=NULL,
parallelTesting=FALSE, clusterIter=!x$maxlike,
clusterType=c("PSOCK", "FORK"), cl=NULL, ...)

Arguments

x A control object, of class sienaAlgorithm.

batch Desired interface: FALSE gives a gui (graphical user interface implemented as a
tcl/tk screen), TRUE gives a small (if verbose=FALSE) amount of printout to the
console.

verbose Produces various output to the console if TRUE.

silent Produces no output to the console if TRUE, even if batch mode.

useCluster Boolean: whether to use a cluster of processes (useful if multiple processors are
available).

nbrNodes Number of processes to use if useCluster is TRUE.

thetaValues If not NULL, this should be a matrix with parameter values to be used in Phase 3.
The number of columns must be equal to the number of estimated parameters in
the effects object (if conditional estimation is used, without the rate parameters
for the conditioning dependent variable). Can only be used if x$simOnly=TRUE.

returnThetas Boolean: whether to return theta values and generated estimation statistics of
Phase 2 runs.



44 siena07

thetaBound Numeric: if at some moment during estimation the maximum absolute value
of the parameters exceeds thetaBound, estimation is interrupted. In interactive
use, the user is requested to give a higher number; if non-numeric input is given,
estimation stops. In non-interactive use, estimation stops anyway. The check is
turned off by using thetaBound=Inf.

targets Numeric vector of length equal to the number of estimated parameters, meant to
supersede the targets calculated from the data set; see "Details". Not for regular
use.

initC Boolean: set to TRUE if the simulation will use C routines (currently always
needed). Only for use if using multiple processors, to ensure all copies are
initialised correctly. Ignored otherwise, so is set to TRUE by default.

clusterString Definitions of clusters. Default set up to use the local machine only.

tt A tcltk toplevel window. Used if called from the model options screen, if
tcltk is available.

parallelTesting

Boolean. If TRUE, sets up random numbers to parallel those in Siena 3.

clusterIter Boolean. If TRUE, multiple processes execute complete iterations at each call. If
FALSE, multiple processes execute a single wave at each call.

clusterType Either "PSOCK" or "FORK". On Windows, must be "PSOCK". On a single
non-Windows machine may be "FORK", and subprocesses will be formed by
forking. If "PSOCK", subprocesses are formed using R scripts.

cl An object of class c("SOCKcluster", "cluster") (see Details).

... Arguments for the simulation function, see simstats0c: in any case, data and
effects, as in the examples below;
possibly also prevAns if a previous reasonable provisional estimate was ob-
tained for a similar model;
possibly also returnDeps if the simulated dependent variables (networks, be-
haviour) should be returned;
possibly also returnChains if the simulated sequences (chains) of ministeps
should be returned; this may produce a very big file.

Details

This is the main function and workhorse of RSiena.

For use of siena07, it is necessary to specify parameters data (RSiena data set) and effects
(effects object), which are required parameters in function simstats0c. (These parameters are
inserted through ’. . . ’.) See the examples.

siena07 runs a Robbins-Monro algorithm for parameter estimation using the three-phase imple-
mentation described in Snijders (2001, 2017), with (if x$findiff=FALSE) derivative estimation as
in Schweinberger and Snijders (2007). The default is estimation according to the Method of Mo-
ments as in Snijders, Steglich and Schweinberger (2007).
If x$gmm=TRUE and myeff contains one or more gmm statistics as included by function includeGMoMStatistics,
the algorithm employs the Generalized Method of Moments as defined in Amati, Schoenenberger,
and Snijders (2015, 2019).
For continuous behavior variables defined with type="continuous" in sienaDependent, estima-
tion is done as described in Niezink and Snijders (2017).



siena07 45

If x$maxlike=TRUE, estimation is done by Maximum Likelihood implemented as in Snijders, Kosk-
inen and Schweinberger (2010).
Phase 1 does a few iterations to estimate the derivative matrix of the targets with respect to the
parameter vector. Phase 2 does the estimation. Phase 3 runs a simulation to estimate standard errors
and check convergence of the model. The simulation function is called once for each iteration in
these phases and also once to initialise the model fitting and once to complete it. Unless in batch
mode, a tcl/tk screen is displayed to allow interruption and to show progress.

If targets is specified (which should be done only in special cases), and provided that estimation
is by the Method of Moments, the data is not a multi-group data set and has exactly 2 waves, and
if the length of the vector targets is equal to the number of estimated parameters (not counting
the rate parameters estimated by conditional estimation), then the vector targets supersedes the
targets calculated from the data set.

It is necessary to check that convergence has been achieved. The rule of thumb is that the all t-ratios
for convergence should be in absolute value less than 0.1 and the overall maximum convergence
ratio should be less than 0.25. If this was not achieved, the result can be used to start another
estimation run from the estimate obtained, using the parameter prevAns as illustrated in the example
below. (This parameter is inserted through ’. . . ’ into the function initializeFRAN.)

For good estimation of standard errors, it is necessary that x$n3 is large enough. More about
this is in the manual. The default value x$n3 set in sienaAlgorithmCreate is adequate for most
explorative use, but for presentation in publications larger values are necessary, depending on the
data set and model; e.g., x$n3=3000 or larger.

Parameters can be tested against zero by dividing the estimate by its standard error and using an ap-
proximate standard normal null distribution. Further, functions Wald.RSiena and Multipar.RSiena
are available for multi-parameter testing.
Parameters specified in includeEffects or setEffect with fix=TRUE, test=TRUE will not be
estimated; score tests of their hypothesized values are reported in the output file specified in the
control (algorithm) object. These tests can be obtained also using score.Test.

If x$simOnly is TRUE, which is meant to go together with x$nsub=0, the calculation of the stan-
dard errors and covariance matrix at the end of Pase 3 is skipped. No estimation is performed. If
thetaValues is not NULL, the parameter values in the rows of this matrix will be used in the con-
secutive runs of Phase 3. If x$n3 is larger than the number of rows times nbrNodes (see below),
the last row of thetaValues will continue to be used. The parameter values actually used will be
stored in the output matrix thetaUsed.

Multiple processors are used for estimation by MoM to distribute each iteration in each subphase
over the cluster of nodes. The number of iterations accordingly will be divided (approximately)
by the number of nodes; for phase 2, unless n2start is specified. This implies that if multiple
processors are used, think of dividing n2start by nbrNodes.
For estimation by ML, multiple processing is done per period. Therefore, for one period (two
waves) and one group, this will have no effect.

In the case of using multiple processors, there are two options for telling siena07 to use them. By
specifying the options useCluster, nbrNodes, clusterString and initC, siena07 will create a
cluster object that will be used by the parallel package. After finishing the estimation proce-
dure, siena07 will automatically stop the cluster. Alternatively, instead of having the function to
create a cluster, the user may provide its own by specifying the option cl, similar to what the boot
function does in the boot package. By using the option cl the user may be able to create more
complex clusters (see examples below).

https://CRAN.R-project.org/package=boot


46 siena07

If thetaValues is not NULL and nbrNodes >= 2, parameters in Phase 3 will be constant for each set
of nbrNodes consecutive simulations. This must be noted in the interpretation, and will be visible
in thetaUsed (see below).

The keyword thetaBound is used because in practice, parameter values of Stochastic Actor-oriented
Models will be relatively small, and for usual models values larger than 30 never occur, which means
that when they occur this is regarded as a signal of divergence of the algorithm.
Note that covariates should have large enough standard deviations; see the manual.

Value

Returns an object of class sienaFit, some parts of which are:

OK Boolean indicating successful termination

termination Character string, values: "OK", "Error", or "UserInterrupt". "UserInterrupt"
indicates that the user asked for early termination before phase 3.

f Various characteristics of the data and model definition.
requestedEffects

The included effects in the effects object.

effects The included effects in the effects object to which are added the main effects of
the requested interaction effects, if any.

theta Estimated value of theta, if x$simOnly=FALSE.

thetas Matrix, returned if returnThetas and x$nsub >= 1. First column is subphase;
further columns are values of theta as generated during this subphase of Phase
2.

sfs Matrix, returned if returnThetas and x$nsub >= 1. First column is subphase;
further columns are deviations from targets generated during this subphase of
Phase 2.

covtheta Estimated covariance matrix of theta; this is not available if x$simOnly=TRUE.

se Vector of standard errors of estimated theta, if x$simOnly=FALSE.

dfra Matrix of estimated derivatives.

sf Matrix of simulated deviations from targets in phase 3.

sf2 Array of periodwise deviations from simulations in phase 3. Not included if
x$lessMem=TRUE.

W If x$gmm=TRUE: Estimated optimal matrix of weights for estimation by the Gen-
eralized Method of Moments.

B If x$gmm=TRUE: Row-normalized matrix of weights for equating the linear com-
bination of estimation statistics to 0, for estimation by the Generalized Method
of Moments.

tconv t-statistics for convergence.

tmax maximum absolute t-statistic for convergence for non-fixed parameters.

tconv.max overall maximum convergence ratio.

ac3 If x$maxlike=TRUE: autocorrelations of statistics in Phase 3.

targets Observed statistics; for ML, zero vector.



siena07 47

targets2 Observed statistics by wave, starting with second wave; for ML, zero matrix.

ssc Score function contributions for each wave for each simulation in phase 3. Not
included if finite difference method is used or if x$lessMem=TRUE.

scores Score functions, added over waves, for each simulation in phase 3. Only in-
cluded if x$lessMem=FALSE.

regrCoef If x$dolby and not x$maxlike: regression coefficients of estimation statistics
on score functions.

regrCor If x$dolby and not x$maxlike: correlations between estimation statistics and
score functions.

estMeans Estimated means of estimation statistics.

estMeans.sem If x$simOnly: Standard errors of the estimated means of estimation statistics.

sims If returnDeps=TRUE: list of simulated dependent variables (networks, behaviour).
Networks are given as a list of edgelists, one for each period.
The structure of sims is a nested list: sims[[run]][[group]][[dependent
variable]][[period]]. If x$maxlike=TRUE and there is only one group and
one period, the structure is [[run]][[dependent variable]].

chain If returnChains = TRUE: list, or data frame, of simulated chains of ministeps.
The chain has the structure chain[[run]][[depvar]][[period]][[ministep]].

Phase3nits Number of iterations actually performed in phase 3.

thetaUsed If thetaValues is not NULL, the matrix of parameter values actually used in the
simulations of Phase 3.

Writes text output to the file named "projname.txt", where projname is defined in the sienaAlgorithm
object x.

Author(s)

Ruth Ripley, Tom Snijders, Viviana Amati, Felix Schoenenberger, Nynke Niezink

References

Amati, V., Schoenenberger, F., and Snijders, T.A.B. (2015), Estimation of stochastic actor-oriented
models for the evolution of networks by generalized method of moments. Journal de la Societe
Francaise de Statistique 156, 140–165.

Amati, V., Schoenenberger, F., and Snijders, T.A.B. (2019), Contemporaneous statistics for estima-
tion in stochastic actor-oriented co-evolution models. Psychometrika 84, 1068–1096.

Greenan, C. (2015), Evolving Social Network Analysis: developments in statistical methodology for
dynamic stochastic actor-oriented models. DPhil dissertation, University of Oxford.

Niezink, N.M.D., and Snijders, T.A.B. (2017), Co-evolution of Social Networks and Continuous
Actor Attributes. The Annals of Applied Statistics 11, 1948–1973.

Schweinberger, M., and Snijders, T.A.B. (2007), Markov models for digraph panel data: Monte
Carlo based derivative estimation. Computational Statistics and Data Analysis 51, 4465–4483.

Snijders, T.A.B. (2001), The statistical evaluation of social network dynamics. Sociological Method-
ology 31, 361–395.



48 siena07

Snijders, T.A.B. (2017), Stochastic Actor-Oriented Models for Network Dynamics. Annual Review
of Statistics and Its Application 4, 343–363.

Snijders, T.A.B., Koskinen, J., and Schweinberger, M. (2010). Maximum likelihood estimation for
social network dynamics. Annals of Applied Statistics 4, 567–588.

Snijders, T.A.B., Steglich, C.E.G., and Schweinberger, Michael (2007), Modeling the co-evolution
of networks and behavior. Pp. 41–71 in Longitudinal models in the behavioral and related sciences,
edited by van Montfort, K., Oud, H., and Satorra, A.; Lawrence Erlbaum.

Steglich, C.E.G., Snijders, T.A.B., and Pearson, M.A. (2010), Dynamic networks and behavior:
Separating selection from influence. Sociological Methodology 40, 329–393. Information about the
implementation of the algorithm is in https://www.stats.ox.ac.uk/~snijders/siena/Siena_
algorithms.pdf. Further see https://www.stats.ox.ac.uk/~snijders/siena/ .

See Also

siena, sienaAlgorithmCreate, sienaEffects, Wald.RSiena, Multipar.RSiena, score.Test.

There are print, summary and xtable methods for sienaFit objects: xtable, print.sienaFit.

Examples

myalgorithm <- sienaAlgorithmCreate(nsub=2, n3=100, seed=1293)
# nsub=2, n3=100 is used here for having a brief computation, not for practice.
mynet1 <- sienaDependent(array(c(tmp3, tmp4), dim=c(32, 32, 2)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE)

# or for non-conditional estimation --------------------------------------------
## Not run:
model <- sienaAlgorithmCreate(nsub=2, n3=100, cond=FALSE, seed=1283)
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE)

## End(Not run)

# or if a previous "on track" result ans was obtained --------------------------
## Not run:
ans1 <- siena07(myalgorithm, data=mydata, effects=myeff, prevAns=ans)

## End(Not run)

# Running in multiple processors -----------------------------------------------
## Not run:
# Not tested because dependent on presence of processors
# Find out how many processors there are
library(parallel)
(n.clus <- detectCores() - 1)
n.clus <- min(n.clus, 4) # keep time for other processes
ans2 <- siena07(myalgorithm, data=mydata, effects=myeff,

useCluster=TRUE, nbrNodes=n.clus, initC=TRUE)

# Suppose 8 processors are going to be used.

https://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf
https://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf
https://www.stats.ox.ac.uk/~snijders/siena/


siena07 49

# Loading the parallel package and creating a cluster
# with 8 processors (this should be equivalent)

library(parallel)
cl <- makeCluster(n.clus)

ans3 <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE, cl = cl)

# Notice that now -siena07- perhaps won't stop the cluster for you.
# stopCluster(cl)

# You can create even more complex clusters using several computers. In this
# example we are creating a cluster with 3*8 = 24 processors on three
# different machines.
#cl <- makePSOCKcluster(
# rep(c('localhost', 'machine2.website.com' , 'machine3.website.com'), 8),
# user='myusername', rshcmd='ssh -p PORTNUMBER')

#ans4 <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE, cl = cl)
#stopCluster(cl)

## End(Not run)

# for a continuous behavior variable -------------------------------------------
# simulate behavior data according to dZ(t) = [-0.1 Z + 1] dt + 1 dW(t)
set.seed(123)
y1 <- rnorm(50, 0,3)
y2 <- exp(-0.1) * y1 + (1-exp(-0.1)) * 1/ -0.1 + rnorm(50, 0, (exp(-0.2)- 1) / -0.2 * 1^2)
friend <- sienaDependent(array(c(s501, s502), dim = c(50,50,2)))
behavior <- sienaDependent(matrix(c(y1,y2), 50,2), type = "continuous")
(mydata <- sienaDataCreate(friend, behavior))
(myeff <- getEffects(mydata, onePeriodSde = TRUE))
algorithmMoM <- sienaAlgorithmCreate(nsub=1, n3=20, seed=321)
(ans <- siena07(myalgorithm, data = mydata, effects = myeff, batch=TRUE))

# Accessing simulated networks for ML ------------------------------------------
# The following is an example for accessing the simulated networks for ML,
# which makes sense only if there are some missing tie variables;
# observed tie variables are identically simulated
# at the moment of observation,
# missing tie variable are imputed in a model-based way.
mat1 <- matrix(c(0,0,1,1,

1,0,0,0,
0,0,0,1,
0,1,0,0),4,4, byrow=TRUE)

mat2 <- matrix(c(0,1,1,1,
1,0,0,0,
0,0,0,1,
0,0,1,0),4,4, byrow=TRUE)

mat3 <- matrix(c(0,1,0,1,
1,0,0,0,
0,0,0,0,
NA,1,1,0),4,4, byrow=TRUE)



50 siena08

mats <- array(c(mat1,mat2,mat3), dim=c(4,4,3))
net <- sienaDependent(mats, allowOnly=FALSE)
sdat <- sienaDataCreate(net)
alg <- sienaAlgorithmCreate(maxlike=TRUE, nsub=3, n3=100, seed=12534)
effs <- getEffects(sdat)
(ans <- siena07(alg, data=sdat, effects=effs, returnDeps=TRUE, batch=TRUE))
# See manual Section 9.1 for information about the following functions
edges.to.adj <- function(x,n){
# create empty adjacency matrix

adj <- matrix(0, n, n)
# put edge values in desired places

adj[x[, 1:2]] <- x[, 3]
adj

}
the.edge <- function(x,n,h,k){

edges.to.adj(x,n)[h,k]
}
# Now show the results
n <- 4
ego <- rep.int(1:n,n)
alter <- rep(1:n, each=n)
# Get the average simulated adjacency matrices for wave 3 (period 2):
ones <- sapply(1:n^2, function(i)

{mean(sapply(ans$sims,
function(x){the.edge(x[[1]][[2]][[1]],n,ego[i],alter[i])}))})

# Note that for maximum likelihood estimation,
# if there is one group and one period,
# the nesting levels for group and period are dropped from ans$sims.
cbind(ego,alter,ones)
matrix(ones,n,n)

siena08 Function to perform a meta analysis of a collection of Siena fits.

Description

Estimates a meta analysis based on a collection of Siena fits.

Usage

siena08(..., projname = "sienaMeta", bound = 5, alpha = 0.05, maxit=20)

Arguments

... names of sienaFit objects, returned from siena07. They will be renamed if
entered in format newname=oldname. It is also allowed to give for . . . a list of
sienaFit objects.

projname Base name of report file if required

bound Upper limit of standard error for inclusion in the meta analysis.



siena08 51

alpha 1 minus confidence level of confidence intervals.

maxit Number of iterations of iterated least squares procedure.

Details

A meta analysis is performed as described in the Siena manual, section "Meta-analysis of Siena
results". This consists of three parts: an iterated weighted least squares (IWLS) modification of the
method described in the reference below; maximum likelihood estimates and confidence intervals
based on profile likelihoods under normality assumptions; and Fisher combinations of left-sided
and right-sided p-values. These are produced for all effects separately.

Note that the corresponding effects must have the same effect name in each model fit. This implies
that at least covariates and behavior variables must have the same name in each model fit.

Value

An object of class sienaMeta. There are print, summary and plot methods for this class. This
object contains at least the following.

thetadf Data frame containing the coefficients, standard errors and score test results

projname Root name for any output file to be produced by the print method

bound Estimates with standard error above this value were excluded from the calcula-
tions

scores Object of class by indicating, for each effect in the models, whether score test
information was present.

requestedEffects

The requestedEffects component of the first sienaFit object in ....

muhat The vector of IWLS estimates.

se.muhat The vector of standard errors of the IWLS estimates.

theta The vector of ML estimates mu.ml (see below).

se The vector of standard errors of the ML estimates mu.ml.se (see below).

Then for each effect, there is a list with at least the following.

cor.est Spearman rank correlation coefficient between estimates and their standard er-
rors.

cor.pval p-value for above

regfit Part of the result of the fit of iwlsm.

regsummary The summary of the fit, which includes the coefficient table.

Tsq test statistic for effect zero in every model

pTsq p-value for above

tratio test statistics that mean effect is 0

ptratio p-value for above

Qstat Test statistic for variance of effects is zero

pttilde p-value for above



52 siena08

cjplus Test statistic for at least one theta strictly greater than 0

cjminus Test statistic for at least one theta strictly less than 0

cjplusp p-value for cjplus

cjminusp p-value for cjminus

mu.ml ML estimate of population mean

mu.ml.se standard error of ML estimate of population mean

sigma.ml ML estimate of population standard deviation

mu.confint confidence interval for population mean based on profile likelihood

sigma.confint confidence interval for population standard deviation based on profile likelihood

n1 Number of fits on which the meta analysis is based

cjplus Test statistic for combination of right one-sided Fisher combination tests

cjminus Test statistic for combination of left one-sided Fisher combination tests

cjplusp p-value for cjplus

cjminusp p-value for cjminus

scoreplus Test statistic for combination of right one-sided p-values from score tests

scoreminus Test statistic for combination of left one-sided p-values from score tests

scoreplusp p-value for scoreplus

scoreminusp p-value for scoreminus

ns Number of fits on which the score test analysis is based

Author(s)

Ruth Ripley, Tom Snijders

References

Snijders, T.A.B, and Baerveldt, C. (2003), A Multilevel Network Study of the Effects of Delinquent
Behavior on Friendship Evolution. Journal of Mathematical Sociology 27, 123–151.

See also the manual (Section 11.2) and https://www.stats.ox.ac.uk/~snijders/siena/

See Also

print.sienaMeta, funnelPlot, meta.table, iwlsm, siena07

Examples

## Not run:
# A meta-analysis for three groups does not make much sense
# for generalizing to a population of networks,
# but the Fisher combinations of p-values are meaningful.
# However, using three groups does show the idea.

Group1 <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
Group3 <- sienaDependent(array(c(N3403, HN3403), dim=c(37, 37, 2)))

https://www.stats.ox.ac.uk/~snijders/siena/


sienaAlgorithmCreate 53

Group4 <- sienaDependent(array(c(N3404, HN3404), dim=c(33, 33, 2)))
dataset.1 <- sienaDataCreate(Friends = Group1)
dataset.3 <- sienaDataCreate(Friends = Group3)
dataset.4 <- sienaDataCreate(Friends = Group4)
OneAlgorithm <- sienaAlgorithmCreate(projname = "SingleGroups", seed=128)
effects.1 <- getEffects(dataset.1)
effects.3 <- getEffects(dataset.3)
effects.4 <- getEffects(dataset.4)
effects.1 <- includeEffects(effects.1, transTrip)
effects.1 <- setEffect(effects.1, transRecTrip, fix=TRUE, test=TRUE)
effects.3 <- includeEffects(effects.3, transTrip)
effects.3 <- setEffect(effects.3, transRecTrip, fix=TRUE, test=TRUE)
effects.4 <- includeEffects(effects.4, transTrip)
effects.4 <- setEffect(effects.4, transRecTrip, fix=TRUE, test=TRUE)
ans.1 <- siena07(OneAlgorithm, data=dataset.1, effects=effects.1, batch=TRUE)
ans.3 <- siena07(OneAlgorithm, data=dataset.3, effects=effects.3, batch=TRUE)
ans.4 <- siena07(OneAlgorithm, data=dataset.4, effects=effects.4, batch=TRUE)
ans.1
ans.3
ans.4
(meta <- siena08(ans.1, ans.3, ans.4))
plot(meta, which=2:3, layout = c(2,1))
# For specifically presenting the Fisher combinations:
# First determine the components of meta with estimated effects:
which.est <- sapply(meta, function(x){ifelse(is.list(x),!is.null(x$cjplus),FALSE)})
Fishers <- t(sapply(1:sum(which.est),

function(i){c(meta[[i]]$cjplus, meta[[i]]$cjminus,
meta[[i]]$cjplusp, meta[[i]]$cjminusp, 2*meta[[i]]$n1 )}))

Fishers <- as.data.frame(Fishers, row.names=names(meta)[which.est])
names(Fishers) <- c('Fplus', 'Fminus', 'pplus', 'pminus', 'df')
Fishers
round(Fishers,4)

## End(Not run)

sienaAlgorithmCreate Function to create an object containing the algorithm specifications
for parameter estimation in RSiena

Description

Creates an object with specifications for the algorithm for parameter estimation in RSiena.

sienaAlgorithmCreate() and sienaModelCreate() are identical functions; the second name
was used from the start of the RSiena package, but the first name indicates more precisely the
purpose of this function.

Usage

sienaAlgorithmCreate(fn, projname = "Siena", MaxDegree = NULL, Offset = NULL,



54 sienaAlgorithmCreate

useStdInits = FALSE, n3 = 1000, nsub = 4, n2start = NULL,
dolby=TRUE, maxlike = FALSE, gmm = FALSE, diagonalize=0.2*!maxlike,
condvarno = 0, condname = "", firstg = 0.2, reduceg = 0.5,
cond = NA, findiff = FALSE, seed = NULL,
prML=1,
maximumPermutationLength=40,
minimumPermutationLength=2, initialPermutationLength=20,
modelType=NULL, behModelType=NULL, mult=5, simOnly=FALSE, localML=FALSE,
truncation=5, doubleAveraging=0, standardizeVar=(diagonalize<1),
lessMem=FALSE, silent=FALSE)

sienaModelCreate(fn, projname = "Siena", MaxDegree = NULL, Offset = NULL,
useStdInits = FALSE, n3 = 1000, nsub = 4, n2start = NULL,
dolby=TRUE, maxlike = FALSE, gmm = FALSE, diagonalize=0.2*!maxlike,
condvarno = 0, condname = "", firstg = 0.2, reduceg = 0.5,
cond = NA, findiff = FALSE, seed = NULL,
prML=1,
maximumPermutationLength=40,
minimumPermutationLength=2, initialPermutationLength=20,
modelType=NULL, behModelType=NULL, mult=5, simOnly=FALSE, localML=FALSE,
truncation=5, doubleAveraging=0, standardizeVar=(diagonalize<1),
lessMem=FALSE, silent=FALSE)

Arguments

fn Function to do one simulation in the Robbins-Monro algorithm. Not to be
touched.

projname Character string name of project; the output file will be called projname.txt. No
embedded spaces!!!
If projname=NULL, output will be written to a file in the temporary session di-
rectory, created as tempfile(Siena).

MaxDegree Named vector of maximum degree values for corresponding networks. Allows
to restrict the model to networks with degrees not higher than this maximum.
Names should be the names of all dependent network variables, in the same
order as in the Siena data set.
Default as well as value 0 imply no restrictions.
This option is not available for maximum likelihood estimation.

Offset Named vector of offset values for symmetric networks with modelType = 3 (M.1),
and for universal setting in Settings model. Names should be the names of all
dependent network variables, in the same order as in the Siena data set. Default
NULL implies values 0.

useStdInits Boolean. If TRUE, the initial values in the effects object will be ignored and
default values used instead. If FALSE, the initial values in the effects object will
be used.

n3 Number of iterations in phase 3. For regular use with the Method of Moments,
n3=1000 mostly suffices. For use in publications and for Maximum Likelihood,
at least n3=3000 is advised. Sometimes much higher values are required for
stable estimation of standard errors.



sienaAlgorithmCreate 55

nsub Number of subphases in phase 2.

n2start Minimum number of iterations in subphase 1 of phase 2; default is 2.52*(p+7),
where p = number of estimated parameters; if useCluster=TRUE in the call of
siena07, this is divided by nbrNodes.

dolby Boolean. Should there be noise reduction by regression on augmented data
score. In most cases dolby=TRUE yields better convergence, but takes some
extra computing time; if convergence is problematic, however, dolby=FALSE
may be tried. Just use whatever works best.

maxlike Whether to use maximum likelihood method or Method of Moments estimation.

gmm Whether to use the Generalized Method of Moments or the regular Method of
Moments estimation.

diagonalize Number between 0 and 1 (bounds included), values outside this interval will be
truncated; for diagonalize=0 the complete estimated derivative matrix will be
used for updates in the Robbins-Monro procedure; for diagonalize=1 only the
diagonal entries will be used; for values between 0 and 1, the weighted average
will be used with weight diagonalize for the diagonalized matrix. Has no effect
for ML estimation.
Higher values are more stable, lower values potentially more efficient. Default:
for ML estimation, diagonalize=0; for MoM estimation, diagonalize = 0.2.

condvarno If cond (conditional simulation), the sequential number of the network or be-
havior variable on which to condition.

condname If conditional, the name of the dependent variable on which to condition. Use
one or other of condname or condvarno to specify the variable.

firstg Initial value of scaling ("gain") parameter for updates in the Robbins-Monro
procedure.

reduceg Reduction factor for scaling ("gain") parameter for updates in the Robbins-
Monro procedure (MoM only).

cond Boolean. Only relevant for Method of Moments simulation/estimation. If TRUE,
use conditional simulation; if FALSE, unconditional simulation. If missing, de-
cision is deferred until siena07, when it is set to TRUE if there is only one
dependent variable, FALSE otherwise.

findiff Boolean: If TRUE, estimate derivatives using finite differences. If FALSE, use
scores.

seed Integer. Starting value of random seed. Not used if parallel testing.

prML Either one real number, or a vector of 7 numbers. Determines update probabili-
ties used in Metropolis-Hastings routine in ML estimation. Should be nonnega-
tive; if a vector, the sum should be <= 1. See Details.

maximumPermutationLength

Maximum length of permutation in steps in ML estimation.
minimumPermutationLength

Minimum length of permutation in steps in ML estimation.
initialPermutationLength

Initial length of permutation in steps in ML estimation.



56 sienaAlgorithmCreate

modelType Named vector indicating the type of model to be fitted for dependent network
variables. (See the examples below for how to specify a named vector.)
Possible values are:
1=directed standard,
2:6 for symmetric networks only: 2=dictatorial forcing (D.1), 3=Initiative model
with reciprocal confirmation (M.1), 4=Pairwise dictatorial forcing model (D.2),
5=Pairwise mutual model (M.2), 6=Pairwise joint model (C.2),
7:10 for directed one-mode only: 7=Double Step model with double step prob-
ability 0.25, 8=Double Step model with double step probability 0.50, 9=Double
Step model with double step probability 0.75, 10=Double Step model with dou-
ble step probability 1.00,
11=Contemporaneous evaluation statistics model.
Names should be the names of all dependent network variables, in the same or-
der as in the Siena data set.
See Snijders and Pickup (2016) for the meanings of the various models for sym-
metric networks.
Default NULL implies 1 for directed or two-mode, 2 for symmetric.

behModelType Named vector indicating the type of model to be fitted for behavioral dependent
variables. (See the examples below for how to specify a named vector.)
Possible values are:
1=standard (restricted), 2=absorbing.
Names should be the names of all dependent behavioral variables, in the same
order as in the Siena data set.
Default NULL implies values 1.

mult Multiplication factor for maximum likelihood and Bayes. Number of steps per
iteration is set to this multiple of the total distance between the observations at
start and finish of the wave (and rounded). Decreasing mult below a certain
value has no further effect.
mult can be either a number (which needs to be positive) or a vector of numbers,
of length equal to the total number of periods. Note that for multi-group data,
the total number of periods is equal to the number of groups times the number
of periods per group (if the latter is constant).

simOnly Logical: If TRUE, then the calculation of the covariance matrix and standard
errors of the estimates at the end of Phase 3 of the estimation algorithm in func-
tion siena07 is skipped. This is suitable if nsub=0 and siena07 is used only for
the purpose of simulation.

localML Logical: If TRUE, and maxlike, then calculations are sped up for models with
all local effects.

truncation Used for step truncation in the Robbins Monro algorithm (applied to deviate/(standard
deviation)).

doubleAveraging

subphase after which double averaging is used in the Robbins Monro algorithm,
which probably increases algorithm efficiency.

standardizeVar Logical: whether to limit deviations used in Robbins-Monro updates to unit
variances.

lessMem Logical: whether to reduce storage during operation of siena07, and of the
object produced, by leaving out arrays by iteration and by period of simulated



sienaAlgorithmCreate 57

statistics sf2 and scores ssc.
if lessMem=TRUE, it will be impossible to run sienaTimeTest or sienaGOF on
the object produced by siena07.

silent Logical: whether to give a note about the output file.

Details

Model specification is done via this object for siena07. This function creates an object with the
elements required to control the Robbins-Monro algorithm. Those not available as arguments can
be changed manually when desired.
The value prML=1 defines the defaults valid in RSiena up to version 1.3.16.
If prML is given as a vector of 7 probabilities, these are, consecutively: the probabilities of inserting
a diagonal step, deleting a diagonal step, permuting, inserting a CCP, deleting a CCP, inserting
random missing, deleting random missing; the residual (1 minus the sum) is the probability of a
move step.
Further information about the implementation of the algorithm is in
https://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf.
Some of the examples use projname=NULL; this is just for the sake of checking the examples, not
necessarily intended for normal use.

Value

Returns an object of class sienaAlgorithm containing values implied by the parameters.

Author(s)

Ruth Ripley and Tom A.B. Snijders

References

For modelType:
Snijders, T.A.B., and Pickup, M. (2016), Stochastic Actor-Oriented Models for Network Dynam-
ics. In: Victor, J.N., Lubell, M., and Montgomery, A.H., Oxford Handbook of Political Networks.
Oxford University Press.

Also see https://www.stats.ox.ac.uk/~snijders/siena/

See Also

siena07, simstats0c.

Examples

myAlgorithm <- sienaAlgorithmCreate(projname="NetworkDyn")
StdAlgorithm <- sienaAlgorithmCreate(projname="NetworkDyn", useStdInits=TRUE)
CondAlgorithm <- sienaAlgorithmCreate(projname="NetworkDyn", condvarno=1, cond=TRUE)
Max10Algorithm <- sienaAlgorithmCreate(projname="NetworkDyn", MaxDegree=c(mynet=10),

modelType=c(mynet=1))
Beh2Algorithm <- sienaAlgorithmCreate(projname="NetBehDyn", behModelType=c(mybeh=2))
# where mynet is the name of the network object created by sienaDependent(),
# and mybeh the name of the behavior object created by the same function.

https://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf
https://www.stats.ox.ac.uk/~snijders/siena/


58 sienaCompositionChange

sienaCompositionChange

Functions to create a Siena composition change object

Description

Used to create a list of events describing the changes over time of a Siena actor set.

Usage

sienaCompositionChange(changelist, nodeSet = "Actors", option = 1)
sienaCompositionChangeFromFile(filename, nodeSet = "Actors",

fileobj=NULL, option = 1)

Arguments

changelist A list with an entry for each actor in the node set. Each entry a vector of numbers
(may be as characters) indicating intervals during which the corresponding actor
was present. Each entry must have an even number of digits. The actor is
assumed to be present from the first to the second, third to fourth, etc., time
points.

filename Name of file containing change information. One line per actor, each line a
series of space delimited numbers indicating intervals.

fileobj The result of readLines on filename.

nodeSet Character string containing the name of a Siena node set. If the entire data set
contains more than one node set, then the node sets must be specified in all data
objects.

option Integer controlling the processing of the tie variables for the actors not currently
present. Values (default is 1)

1 0 before entry, final value carried forward after leaving,
and used for calculating statistics in Method of Moments estimation

2 0 before entry, missing after (final value carried forward, but treated as missing)
3 missing whenever not in the network. Previous values will be used where available,

but always treated as missing values.
4 Convert to structural zeros (not available at present).

Details

If there is a composition change object for the first node set in the data object, then this will be
used in estimation by the Method of Moments to make actors active (able to send and receive ties)
only for the time intervals when this is indicated in the composition change object. This is done
according to the procedure of Huisman and Snijders (2003). See the manual for further details.
For bipartite networks, composition change objects for the second node set have no effect and will
lead to an error message.
For M waves, time starts at 1 and ends at M; so all numbers must be between 1 and the number of



sienaCompositionChange 59

waves (bounds included). Intervals are treated as closed at each end. For example, an entry (2, 4)
means that the actor corresponding to this entry arrived at wave 2 and left at wave 4, but did give
valid date for both of these waves. An entry (1.01, 2.99) means that the actor arrived just after
wave 1 and left just before wave 3, and gave valid data only for wave 2. An entry (1, 2), (3.5,
4) means that the actor was there at the start and left at wave 2 (giving valid data for wave 2), came
back halfway between waves 3 and 4, and gave valid data still at wave 4; if there would be more
than 4 waves in the data set, this entry would also mean that the actor left at wave 4.
For data sets including a composition change object, estimation by Method of Moments is forced
to be unconditional, overriding the specification in the sienaAlgorithm object.

Value

An object of class "compositionChange", a list of numeric vectors, with attributes:

NodeSet Name of node set

Option Option

Author(s)

Ruth Ripley

References

Huisman, M.E. and Snijders, T.A.B. (2003), Statistical analysis of longitudinal network data with
changing composition. Sociological Methods & Research, 32, 253–287.

See also https://www.stats.ox.ac.uk/~snijders/siena/RSiena_Manual.pdf

Further see https://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaNodeSet, sienaDataCreate

Examples

clist <- list(c(1, 3), c(1.4, 2.5))
#or
clist <- list(c("1", "3"), c("1.4", "2.5"))

compChange <- sienaCompositionChange(clist)

s50net <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
s50list <- rep(list(c(1,3)), 50)
# This is a trivial composition change: all actors are present in all waves.
compChange <- sienaCompositionChange(s50list)
s50data <- sienaDataCreate(s50net, compChange)
s50data

## Not run:
filedata <- c("1 3", "1.4 2.5")
write.table(filedata, "cc.dat",row.names=FALSE, col.names=FALSE,

https://www.stats.ox.ac.uk/~snijders/siena/RSiena_Manual.pdf
https://www.stats.ox.ac.uk/~snijders/siena/


60 sienaDataConstraint

quote=FALSE)
## file will be
## 1 3
## 1.4 2.5
compChange <- sienaCompositionChangeFromFile("cc.dat")

## End(Not run)

sienaDataConstraint Function to change the values of the constraints between networks.

Description

This function allows the user to change the constraints of "higher", "disjoint" and "atLeastOne" for
a specified pair of networks in a Siena data object.

Usage

sienaDataConstraint(x, net1, net2,
type = c("higher", "disjoint", "atLeastOne"), value = FALSE)

Arguments

x Siena data object; maybe a group object?

net1 name of first network

net2 name of second network

type one of "higher", "disjoint", "atleastOne". Default is "higher".

value Boolean giving the value.

Details

The value of the appropriate attribute is set to the value requested. Note that, for value=TRUE, the
correspondence of this value to the data is not checked.

Value

Updated Siena data object.

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

https://www.stats.ox.ac.uk/~snijders/siena/


sienaDataCreate 61

See Also

sienaDataCreate, sienaGroupCreate

Examples

nowFriends <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
ever <- array(c(s501, s502, s503), dim=c(50, 50, 3))
ever[,,2] <- pmax(ever[,,1], ever[,,2])
ever[,,3] <- pmax(ever[,,2], ever[,,3])
everFriends <- sienaDependent(ever)
# Note: this data set serves to illustrate this function,
# but it is not an appropriate data set for estimation by siena07,
# because everFriends (for the three waves together) depends deterministically
# on nowFriends (for the three waves together).
nowOrEver <- sienaDataCreate(nowFriends, everFriends)
attr(nowOrEver, "higher")
nowOrEver
nowOrEver.unconstrained <-

sienaDataConstraint(nowOrEver, everFriends, nowFriends, "higher", FALSE)
nowOrEver.unconstrained
attr(nowOrEver.unconstrained, "higher")

sienaDataCreate Function to create a Siena data object

Description

Creates a Siena data object from input dependent variables (networks and possibly behavioural
variables), covariates, and composition change objects.

Usage

sienaDataCreate(..., nodeSets=NULL, getDocumentation=FALSE)

Arguments

... objects of class sienaDependent, coCovar, varCovar, coDyadCovar, varDyadCovar,
and/or sienaCompositionChange; or a list of such objects, of which the first el-
ement must not be a sienaCompositionChange object. There should be at least
one sienaDependent object.
If there are one-mode as well as two-mode dependent networks, the one-mode
networks should be mentioned first.

nodeSets list of Siena node sets. Default is the single node set named "Actors", length
equal to the number of rows in the first object of class "sienaDependent". If the
entire data set contains more than one node set, then the node sets must have
been specified in the creation of all data objects mentioned in . . . .

getDocumentation

Flag to allow documentation of internal functions, not for use by users.



62 sienaDataCreate

Details

The function checks that the objects fit, that there is at least one dependent variable, and adds various
attributes to each variable describing the data. If there is more than one nodeSet they must all be
specified.
Function print01Report will give a basic description of the data object and is a check useful, e.g.,
for diagnosing problems.

Value

An object of class "siena" which is designed to be used in a siena model fit by siena07. The
components of the object are:

nodeSets List of node sets involved

observations Integer indicating number of waves of data

depvars List of networks and behavior variables

cCovars List of constant covariates

vCovars List of changing covariates

dycCovars List of constant dyadic covariates

dyvCovars List of changing dyadic covariates
compositionChange

List of composition change objects corresponding to the node sets

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaDependent, coCovar, varCovar, coDyadCovar, varDyadCovar, sienaNodeSet, sienaCompositionChange,
sienaGroupCreate, sienaDataConstraint, sienaNodeSet, print01Report

Examples

mynet <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mydata <- sienaDataCreate(mynet, mybeh)
# This gives the same result as
mydata <- sienaDataCreate(list(mynet, mybeh))
## And for a two-mode network
mynet1 <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)), nodeSet="senders")
senders <- sienaNodeSet(50, nodeSetName="senders")
receivers <- sienaNodeSet(30, nodeSetName="receivers")
mynet2 <- sienaDependent(array(c(s501[,1:30], s502[,1:30]), dim=c(50, 30, 2)),

nodeSet=c("senders", "receivers"))

https://www.stats.ox.ac.uk/~snijders/siena/


sienaDependent 63

(mydata <- sienaDataCreate(mynet1, mynet2, nodeSets=list(senders, receivers)))
## Not run:
print01Report(mydata, modelname = "mydescription")

## End(Not run)

sienaDependent Function to create a dependent variable for a Siena model

Description

Creates a Siena dependent variable: either a network, created from a matrix or array or list of sparse
matrix of triples; or a behavior variable, created from a matrix.
sienaDependent() and sienaNet() are identical functions; the second name was used from the
start of the RSiena package, but the first name indicates more precisely the purpose of this function.

Usage

sienaDependent(netarray, type=c("oneMode", "bipartite", "behavior", "continuous"),
nodeSet="Actors", sparse=is.list(netarray), allowOnly=TRUE, imputationValues=NULL)

sienaNet(netarray, type=c("oneMode", "bipartite", "behavior", "continuous"),
nodeSet="Actors", sparse=is.list(netarray), allowOnly=TRUE, imputationValues=NULL)

Arguments

netarray type="behavior" or "continuous": matrix (actors × waves).
type="oneMode" or "bipartite": array of values or list of sparse matrices of
type "TsparseMatrix", see the Matrix package; if an array is used, it should
have dimensions: for a one-mode network, n × n × M , and for a two-mode
network n×m×M , where n is the number of actors, m is the number of nodes
in the second mode, and M is the number of waves.

type type of dependent variable, default oneMode.

nodeSet character string naming the appropriate node set. For a bipartite network, a
vector containing 2 character strings: "rows" first, then "columns".

sparse logical: TRUE indicates the data is in sparse matrix format, FALSE otherwise.

allowOnly logical: If TRUE, it will be detected when between any two consecutive waves
the changes are non-decreasing or non-increasing, and if this is the case, this
will also be a constraint for the simulations between these two waves. This is
done by means of the internal parameters uponly and downonly. If FALSE,
the parameters uponly and downonly always are set to FALSE, and changes
in dependent variables will not be constrained to be non-decreasing or non-
increasing. This also will imply that some effects are excluded because they
are superfluous in such constrained situations. This will be reported in the out-
put of print01Report.



64 sienaDependent

For normal operation when this is the case for all periods, usually TRUE is
the appropriate option. When it is only the case for some of the periods, and for
data sets that will be part of a multi-group object created by sienaGroupCreate,
FALSE usually is preferable.

imputationValues

for behavior or continuous dependent variables, a matrix with imputation val-
ues can be included that will be used instead of the default imputation values.

Details

Adds attributes so that the array or list of matrices can be used in a Siena model fit.

Value

An object of class sienaDependent. An array or (networks only) a list of sparse matrices with
attributes:

netdims Dimensions of the network or behavior variable: senders, receivers (1 for be-
havior), periods

type oneMode, bipartite or behavior

sparse Boolean: whether the network is given as a list of sparse matrices or not

nodeSet Character string with name(s) of node set(s)

allowOnly The value of the allowOnly parameter

Author(s)

Ruth Ripley and Tom A.B. Snijders

References

See https://www.stats.ox.ac.uk/~snijders/siena/ .

See Also

sienaDataCreate, sienaNodeSet, sienaDataConstraint

Examples

mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
## note that the following example works although the node sets do not yet exist!
mynet3 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)),

type="bipartite", nodeSet=c("senders", "receivers"))
## sparse matrix input
## To show this, we first go back from the adjacency matrices to edgelists.
## The manual shows one way to do this.
## Another way is to use the sparse matrix representation which internally
## indeed is an edge list:
library(Matrix)
sp501 <- as(Matrix(s501), "TsparseMatrix")

https://www.stats.ox.ac.uk/~snijders/siena/


sienaFit.methods 65

sp502 <- as(Matrix(s502), "TsparseMatrix")
sp503 <- as(Matrix(s503), "TsparseMatrix")
## If you are interested in the internal structure of these sparse matrices,
## you can request
str(sp501)
## Slot @i is the row, @j is the column, and @x the value;
## here the values all are 1.
## Slots @i and @j do not contain information about the number of nodes,
## so that is supplied additionally by @Dim.
mymatlist <- list(sp501, sp502, sp503)
mynet.sp <- sienaDependent(mymatlist)
# For a bipartite (two-mode) network:
senders <- sienaNodeSet(50, nodeSetName="senders")
receivers <- sienaNodeSet(30, nodeSetName="receivers")
mynet <- sienaDependent(array(c(s501[,1:30], s502[,1:30]), dim=c(50, 30, 2)),

nodeSet=c("senders", "receivers"))

sienaFit.methods Methods for processing sienaFit objects, produced by siena07.

Description

print, summary, and xtable methods for sienaFit objects.

Usage

## S3 method for class 'sienaFit'
print(x, tstat=TRUE, ...)

## S3 method for class 'sienaFit'
summary(object, ...)

## S3 method for class 'summary.sienaFit'
print(x, matrices=TRUE, ...)

## S3 method for class 'sienaFit'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, ...)

siena.table(x, type="tex", file=paste(deparse(substitute(x)), ".", type,sep=""),
vertLine=TRUE, tstatPrint=FALSE, sig=FALSE, d=3, nfirst=NULL)

Arguments

object An object of class sienaFit, produced by siena07. For siena.table, objects
of class sienaBayes are also permitted.

x An object of class sienaFit, or summary.sienaFit as appropriate. For siena.table,
objects of class sienaBayes are also permitted.



66 sienaFit.methods

matrices Boolean: whether also to print in the summary the covariance matrix of the
estimates, the derivative matrix of expected statistics X by parameters, and the
covariance matrix of the statistics.

tstat Boolean: if this is NULL, the t-statistics for convergence will not be added to
the report.

type Type of output to produce; must be either "tex" or "html".
file Name of the file; defaults to the name of the sienaFit object. "" indicates

output to the console.
vertLine Boolean: add vertical lines separating the columns in siena.table.
tstatPrint Boolean: add a column of significance t values (parameter estimate/standard

error estimate) to siena.table.
sig Boolean: adds symbols (daggers and asterisks) indicating significance levels for

the parameter estimates to siena.table.
d The number of decimals places used in siena.table.
caption See documentation for xtable.
label See documentation for xtable.
align See documentation for xtable.
digits See documentation for xtable.
display See documentation for xtable
nfirst Only relevant for the multiSiena package.
... Add extra parameters for print.xtable here. e.g. type, file.

Value

The function print.sienaFit prints a table containing estimated parameter values, standard errors
and (optionally) t-statistics for convergence.

The function summary.sienaFit prints a table containing estimated parameter values, standard
errors and t-statistics for convergence together with the covariance matrix of the estimates, the
derivative matrix of expected statistics X by parameters, and the covariance matrix of the expected
statistics X.

The function xtable.sienaFit creates an object of class xtable.sienaFit which inherits from
class xtable and passes an extra arguments to the print.xtable.

The function siena.table outputs a latex or html table of the estimates and standards errors of
a sienaFit object. The table will be written to a file in the current directory and has a footnote
reporting the maximum of the convergence t-ratios. Endowment or creation effects will be denoted,
respectively, by ’maintenance’ or ’creation’.

See the manual for how to import the html tables easily into MS-Word.

Author(s)

Ruth Ripley, Charlotte Greenan, Tom Snijders

References

See https://www.stats.ox.ac.uk/~snijders/siena/

https://www.stats.ox.ac.uk/~snijders/siena/


sienaGOF 67

See Also

xtable, print.xtable, siena07

Examples

myalgorithm <- sienaAlgorithmCreate(nsub=2, n3=100, projname=NULL)
mynet1 <- sienaDependent(array(c(tmp3, tmp4), dim=c(32, 32, 2)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE)
ans
summary(ans)
## Not run:
xtable(ans, type="html", file="ans.html")
siena.table(ans, type="html", tstat=TRUE, d=2)

## End(Not run)

sienaGOF Functions to assess goodness of fit for SAOMs

Description

The function sienaGOF assesses goodness of fit for a model specification as represented by an
estimated sienaFit object created by siena07. This is done by simulations of auxiliary statistics,
that differ from the statistics used for estimating the parameters. The auxiliary statistics must be
given explicitly.

The fit is good if the average values of the auxiliary statistics over many simulation runs are close
to the values observed in the data. A Monte Carlo test based on the Mahalanobis distance is used to
calculate frequentist p-values.

Plotting functions can be used to diagnose bad fit. There are basic functions for calculating auxiliary
statistics available out of the box, and the user is invited to create additional ones.

Usage

sienaGOF(sienaFitObject, auxiliaryFunction,
period=NULL, verbose=FALSE, join=TRUE, twoTailed=FALSE,
cluster=NULL, robust=FALSE, groupName="Data1",
varName, tested=NULL, iterations=NULL, giveNAWarning=TRUE, ...)

## S3 method for class 'sienaGOF'
plot(x, center=FALSE, scale=FALSE, violin=TRUE, key=NULL,

perc=.05, period=1, position=4, fontsize=12, ...)
descriptives.sienaGOF(x, center=FALSE, scale=FALSE, perc=.05, key=NULL,

period=1, showAll=FALSE)



68 sienaGOF

Arguments

sienaFitObject An object of class sienaFit, produced by a call to siena07 with returnDeps =
TRUE and maxlike=FALSE (the latter is the default, the former is not); or a list of
such objects; if a list, then the first period of each sienaFit object will be used.
If this is a list of sienaFit objects, where sienaFitObject is mentioned below,
it refers to the first element of this list.

auxiliaryFunction

Function to be used to calculate the auxiliary statistics; this can be a user-defined
function, e.g. depending on the sna or igraph packages.
See Examples and sienaGOF-auxiliary for more information on the signature
of this function. The basic signature is
function(index, data, sims, period, groupName, varName, ...), where index
is the index of the simulated network, or NULL if the observed variable is needed;
data is the observed data object from which the relevant variables are extracted;
sims is the list of simulations returned from siena07; period is the index of
the period; and . . . are further arguments (like levls in the examples below and
in sienaGOF-auxiliary).

period Vector of period(s) to be used (may run from 1 to number of waves - 1). Has an
effect only if join=FALSE.
May be only a single number if sienaFitObject is a list of sienaFit objects.

verbose Whether to print intermediate results. This may give some peace of mind to the
user because calculations can take some time.

join Boolean: should sienaGOF do tests on all of the periods individually (FALSE),
or sum across periods (TRUE)?

twoTailed Whether to use two tails for calculating p-values on the Monte Carlo test. Rec-
ommended for advanced users only, as it is probably only applicable in rare
cases.

cluster Optionally, a parallel or snow cluster to execute the auxiliary function calcu-
lations on.

robust Whether to use robust estimation of the covariance matrix.

groupName Name of group; relevant for multi-group data sets.

varName Name of dependent variable.

tested A logical vector of length sienaFitObject$pp (number of parameters), indi-
cating a subset of tested parameters; or NULL, indicating all tested parameters
(see below); or FALSE, indicating nothing is to be tested.

iterations Number of iterations for the goodness of fit calculations. If NULL, the number of
simulated data sets in sienaFitObject.

giveNAWarning If TRUE, a warning is given if any simulated values are missing.

x Result from a call to sienaGOF.

center Whether to center the statistics by median during plotting.

scale Whether to scale the statistics by range during plotting. scale=TRUE makes little
sense without also center=TRUE.

violin Use violin plots (vs. box plots only)?



sienaGOF 69

key Keys in the plot for the levels of the auxiliary statistic (as given by parameter
levls in the examples).

perc 1 minus confidence level for the confidence bands (two sided).

position Position where the observed value is plotted: 1=under, 2=to the left, 3=above,
4=to the right of the red dot. Can be a single number from 1 to 4, or a vector
with positions for each statistic (possibly recycled).

fontsize Font size for the observed values plotted.

... Other arguments; for sienaGOF(), e.g., levls as a parameter for the auxiliary
statistic in sienaGOF-auxiliary;
for plot.sienaGOF(), e.g., the usual plotting parameters main, xlab, ylab,
cex, cex.main, cex.lab, and cex.axis.

showAll If FALSE, drops statistics with variance 0, like in the plot.

Details

This function is used to assess the goodness of fit of an estimated stochastic actor-oriented model
for an arbitrarily defined multidimensional auxiliary statistic. It operates basically by comparing
the observed values, at the ends of the periods, with the simulated values for the ends of the peri-
ods. The differences are assessed by combining the components of the auxiliary statistic using the
Mahalanobis distance.

For sienaFitObjects that were made for a multi-group data set, if you are not sure about the
groupNames to use, these can be retrieved by the command "names(dataObject)" (where dataObject
is the data used to produce the sienaFitObject). Mostly they are "Data1", "Data2", etc.

To save computation time, iterations can be set to a lower number than what is available in
sienaFitObject; this will yield a less precise result.

The function does not work properly for data sets that include a sienaCompositionChange object.
If you wish to test the fit for such a data set, you need (for the purpose of fit assessment only)
to replace the data set by a data set where absent actors are represented by structural zeros, and
estimate the same model for this data set with the corresponding effects object, and use sienaGOF
for this sienaFit object.

To achieve comparability between simulated and observed dependent variables, variables that are
missing in the data at the start or end of a period are replaced by 0 (for tie variables) or NA (for
behavior variables).
If there are any differences between structural values at the beginning and at the end of a period,
these are dealt with as follows. For tie variables that have a structural value at the start of the
period, this value is used to replace the observed value at the end of the period (for the goodness
of fit assessment only). For tie variables that have a structural value at the end of the period but a
free value value at the start of the period, the reference value for the simulated values is lacking;
therefore, the simulated values at the end of the period then are replaced by the structural value at
the end of the period (again, for the goodness of fit assessment only).

The auxiliary statistics documented in sienaGOF-auxiliary are calculated for the simulated de-
pendent variables in Phase 3 of the estimation algorithm, returned in sienaFitObject because
of having used returnDeps = TRUE in the call to siena07. These statistics should be chosen to
represent features of the network that are not explicitly fit by the estimation procedure but can be
considered important properties that the model at hand should represent well. Some examples are:



70 sienaGOF

• Outdegree distribution

• Indegree distribution

• Distribution of the dependent behavior variable (if any).

• Distribution of geodesic distances

• Triad census

• Edgewise homophily counts

• Edgewise shared partner counts

• Statistics depending on the combination of network and behavioral variables.

The function is written so that the user can easily define other functions to capture some other rele-
vant aspects of the network, behaviors, etc. This is further illustrated in the help page sienaGOF-auxiliary.

We recommend the following heuristic approach to model checking:

1. Check convergence of the estimation.

2. Assess goodness of fit (primarily using join=TRUE) on auxiliary statistics, and if necessary
refine the model.

3. Assess time heterogeneity by sienaTimeTest and if there is evidence for time heterogeneity
either modify the base effects or include time dummy terms.

No general rules can be given about whether time heterogeneity (sienaTimeTest) or goodness of
fit using sienaGOF have precedence. This is an explorative issue.

The summary function will display some useful information to help with model selection if some
effects are set in the effects object to be fixed and tested. In that case, for all parameters indicated
in the vector tested, a rough estimator is computed for the Mahalanobis distance that would be
obtained at each proposed specification. This is then given in the summary. This can help guide
model selection. This estimator is called the modified Mahalanobis distance (MMD). See Lospinoso
and Snijders (2019) or the manual for more information.

The following functions are pre-fabricated for ease of use, and can be passed in as the auxiliaryFunction
with no extra effort; see sienaGOF-auxiliary and the examples below.

• IndegreeDistribution

• OutdegreeDistribution

• BehaviorDistribution

• TriadCensus

• mixedTriadCensus

• dyadicCov

Value

sienaGOF returns a result of class sienaGOF; this is a list of elements of class sienaGofTest; if
join=TRUE, the list has length 1; if join=FALSE, each list element corresponds to a period analyzed;
the list elements are themselves lists again, including the following elements:

- sienaFitName The name of sienaFitObject.



sienaGOF 71

- auxiliaryStatisticName

The name of auxiliaryFunction.

- Observations The observed values for the auxiliary statistics.

- Simulations The simulated auxiliary statistics.
- ObservedTestStat

The observed Mahalanobis distance in the data.
- SimulatedTestStat

The Mahalanobis distance for the simulations.

- TwoTailed Whether the p-value corresponds to a one- or two-tailed Monte Carlo test.

- p The p-value for the observed Mahalanobis distance in the permutation distribu-
tion of the simulated Mahalanobis distances.

- Rank Rank of the covariance matrix of the simulated auxiliary statistics.

In addition there are several attributes which give, for model specifications with fixed-and-tested
effects, approximations to the expected Mahalanobis distance for model specifications where each
of these effects would be added. This is reported in the summary method.
The plot method makes violin plots or box plots, with superimposed confidence bands, for the sim-
ulated distributions of all elements of the auxiliaryFunction, with the observed values indicated
by red dots; but statistics with variance 0 are dropped.

descriptives.sienaGOF returns a matrix giving numerical information about what is plotted in
the plot method: maximum, upper percentile, mean, median, lower percentile, minimum, and
standard deviation of the simulated distributions of the auxiliary statistics, the observed values,
and the proportions of simulated values greater and greater-or-equal than the observed values. If
center=TRUE the median is subtracted from mean, median, and percentiles; if scale=TRUE these
numbers and the standard deviation are divided by (maximum - minimum).
If showAll=FALSE, statistics with variance 0 will be dropped.

Author(s)

Josh Lospinoso, modifications by Ruth Ripley and Tom Snijders

References

Lospinoso, J.A. and Snijders, T.A.B. (2019, Goodness of fit for stochastic actor-oriented models.
Methodological Innovations, 12:2059799119884282.

Also see https://www.stats.ox.ac.uk/~snijders/siena/

See Also

siena07, sienaGOF-auxiliary, sienaTimeTest

Examples

mynet <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)))
mybeh <- sienaDependent(s50a[,1:2], type="behavior")
mydata <- sienaDataCreate(mynet, mybeh)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip)

https://www.stats.ox.ac.uk/~snijders/siena/


72 sienaGOF

myeff <- setEffect(myeff, cycle3, fix=TRUE, test=TRUE)
myeff <- setEffect(myeff, transTies, fix=TRUE, test=TRUE)
myalgorithm <- sienaAlgorithmCreate(nsub=1, n3=10, projname=NULL)
# Shorter phases 2 and 3, just for example.
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE, returnDeps=TRUE)
gofi <- sienaGOF(ans, IndegreeDistribution, verbose=TRUE, join=TRUE,

varName="mynet")
summary(gofi)
plot(gofi)

# Illustration just for showing a case with two dependent networks;
# running time backwards is not meaningful!
mynet1 <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)))
mynet2 <- sienaDependent(array(c(s503, s501), dim=c(50, 50, 2)))
mybeh <- sienaDependent(s50a[,1:2], type="behavior")
mydata <- sienaDataCreate(mynet1, mynet2, mybeh)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip)
myeff <- includeEffects(myeff, recip, name="mynet2")
# Shorter phases 2 and 3, just for example.
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE, returnDeps=TRUE)
gofi <- sienaGOF(ans, IndegreeDistribution, verbose=TRUE, join=TRUE,

varName="mynet1")
summary(gofi)
plot(gofi)

## Not run:
(gofi.nc <- sienaGOF(ans, IndegreeDistribution, cumulative=FALSE,

varName="mynet1"))
# cumulative is an example of "...".
plot(gofi.nc)
descriptives.sienaGOF(gofi.nc)

(gofi2 <- sienaGOF(ans, IndegreeDistribution, varName="mynet2"))
plot(gofi2)

(gofb <- sienaGOF(ans, BehaviorDistribution, varName = "mybeh"))
plot(gofb)

(gofo <- sienaGOF(ans, OutdegreeDistribution, varName="mynet1",
levls=0:6, cumulative=FALSE))

# levls is another example of "...".
plot(gofo)

## End(Not run)

## A demonstration of using multiple processes
## Not run:
library(parallel)
(n.clus <- detectCores() - 1)
n.clus <- min(n.clus, 4) # keep time for other processes
myalgorithm.c <- sienaAlgorithmCreate(nsub=4, n3=1000, seed=1265)
(ans.c <- siena07(myalgorithm.c, data=mydata, effects=myeff, batch=TRUE,



sienaGOF-auxiliary 73

returnDeps=TRUE, useCluster=TRUE, nbrNodes=n.clus))
gofi.1 <- sienaGOF(ans.c, TriadCensus, verbose=TRUE, varName="mynet1")
cl <- makeCluster(n.clus)
gofi.cl <- sienaGOF(ans.c, TriadCensus, varName="mynet1", cluster=cl)
cl2 <- makeCluster(2)
gofi.cl2 <- sienaGOF(ans.c, TriadCensus, varName="mynet1", cluster=cl2)
# compare simulation times
attr(gofi.1,"simTime")
attr(gofi.cl,"simTime")
attr(gofi.cl2,"simTime")

## End(Not run)

sienaGOF-auxiliary Auxiliary functions for goodness of fit assessment by sienaGOF

Description

The functions given here are auxiliary to function sienaGOF which assesses goodness of fit for
actor-oriented models.

The auxiliary functions are, first, some functions of networks or behaviour (i.e., statistics) for which
the simulated values for the fitted model are compared to the observed value; second, some extrac-
tion functions to extract the observed and simulated networks and/or behaviour from the sienaFit
object produced by siena07 with returnDeps=TRUE.

These functions are exported here mainly to enable users to write their own versions. At the end of
this help page some non-exported functions are listed. These are not exported because they depend
on packages that are not in the R base distribution; and to show templates for readers wishing to
contruct their own functions.

Usage

OutdegreeDistribution(i, obsData, sims, period, groupName, varName,
levls=0:8, cumulative=TRUE)

IndegreeDistribution(i, obsData, sims, period, groupName, varName,
levls=0:8, cumulative=TRUE)

BehaviorDistribution(i, obsData, sims, period, groupName, varName,
levls=NULL, cumulative=TRUE)

TriadCensus(i, obsData, sims, period, groupName, varName, levls=1:16)

mixedTriadCensus(i, obsData, sims, period, groupName, varName)

dyadicCov(i, obsData, sims, period, groupName, varName, dc)



74 sienaGOF-auxiliary

sparseMatrixExtraction(i, obsData, sims, period, groupName, varName)

networkExtraction(i, obsData, sims, period, groupName, varName)

behaviorExtraction(i, obsData, sims, period, groupName, varName)

Arguments

i Index number of simulation to be extracted, ranging from 1 to length(sims);
if NULL, the data observation will be extracted.

obsData The observed data set to which the model was fitted; normally this is x$f where
x is the sienaFit object for which the fit is being assessed.

sims The simulated data sets to be compared with the observed data; normally this is
x$sims where x is the sienaFit object for which the fit is being assessed.

period Period for which data and simulations are used (may run from 1 to number of
waves - 1).

groupName Name of group; relevant for multi-group data sets; defaults in sienaGOF to
"Data1".

varName Name of dependent variable.

levls Levels used as values of the auxiliary statistic. For BehaviorDistribution,
this defaults to the observed range of values.

cumulative Are the distributions to be considered as raw or cumulative (<=) distributions?

dc Dyadic covariate: either a matrix with dimensions n×n; or, as period-dependent
values, an array with dimensions n × n × (M − 1); where n is the number of
actors and M is the number of waves. There may be more time points, but those
after (M − 1) will not be used.

Details

The statistics should be chosen to represent features of the network that are not explicitly fit by
the estimation procedure but can be considered important properties that the model at hand should
represent well. The three given here are far from a complete set; they will be supplemented in due
time by statistics depending on networks and behavior jointly. The examples below give a number
of other statistics, using the packages sna and igraph.

The levls parameter must be adapted to the range of values that is considered important. For inde-
grees and outdegrees, the whole range should usually be covered. If the range is large, which could
be the case, e.g., for indegrees of two-mode networks where the second mode has few nodes, think
about the possibility of making a selection such as levls=5*(0:20) or levls=c(0:4,5*(1:20));
which in most cases will make sense only if cumulative=TRUE.

The method signature for the auxiliary statistics generally is
function(i, obsData, sims, period, groupName, varName, ...). For constructing new auxil-
iary statistics, it is helpful to study the code of OutdegreeDistribution, IndegreeDistribution,
and BehaviorDistribution and of the example functions below.

TriadCensus returns the distribution of the Holland-Leinhardt triad census according to the algo-
rithm by Batagelj and Mrvar (implementation by Parimalarangan, Slota, and Madduri). An alterna-
tive is the TriadCensus.sna function mentioned below, from package sna, which gives the same



sienaGOF-auxiliary 75

results. Here the levls parameter can be used to exclude some triads, e.g., for non-directed net-
works.
The Batagelj-Mrvar algorithm is optimized for sparse, large graphs and may be much faster than
the procedure implemented in sna. For dense graphs the sna procedure may be faster.

dyadicCov assumes that dc is a categorical dyadic variable, and returns the frequencies of the non-
zero values for realized ties. Since zero values of dc are not counted, it may be advisable to code dc
so that all non-diagonal values are non-zero, and all diagonal values are zero.

Value

OutdegreeDistribution returns a named vector, the distribution of the observed or simulated
outdegrees for the values in levls.

IndegreeDistribution returns a named vector, the distribution of the observed or simulated in-
degrees for the values in levls.

BehaviorDistribution returns a named vector, the distribution of the observed or simulated be-
havioral variable for the values in levls.

TriadCensus returns a named vector, the distribution of the Holland-Leinhardt triad census accord-
ing to the algorithm by Batagelj and Mrvar.

mixedTriadCensus returns a named vector, the distribution of the mixed triad census of Hollway,
Lomi, Pallotti, and Stadtfeld (2017). See their Figure 1 for the meaning of the codes. In this figure,
ties between the bottom nodes are for the first network, ties from the bottom to the top nodes are
for the second network. The mixed triad census can be used for pairs of dependent networks of
which the first must be one-mode and the second can be one-mode or two-mode. If the second is
one-mode, the set of triads considered is only a subset of all mixed triads, and ties in the figure are
directed upward; existence of other ties is not considered.

dyadicCov returns a named vector, the frequencies of the non-missing non-zero values dc(ego,alter)
of the observed or simulated (ego,alter) ties.

sparseMatrixExtraction returns the simulated network as a "TsparseMatrix"; this is the virtual
class for sparse numeric matrices represented by triplets in the Matrix package.
Tie variables for ordered pairs with a missing value for wave=period or period+1 are zeroed; note
that this also is done in RSiena for calculation of target statistics. Tie variables that are structurally
determined at the beginning of a period are used to replace observed values at the end of the period;
tie variables that are structurally determined at the end, but not the beginning, of a period are used
to replace simulated values at the end of the period.
To treat the objects returned by this function as regular matrices, it is necessary to attach the Matrix
package in your session.

networkExtraction returns the network as an edge list of class network according to the network
package (used for package sna). Missing values and structural values are treated as in sparseMatrixExtraction,
see above.

behaviorExtraction returns the dependent behavior variable as an integer vector. Values for
actors with a missing value for wave=period or period+1 are transformed to NA.

Author(s)

Josh Lospinoso, Tom Snijders



76 sienaGOF-auxiliary

References

Batagelj, V., and Mrvar, A. (2001), A subquadratic triad census algorithm for large sparse networks
with small maximum degree. Social Networks, 23, 237–243.

Holland, P.W., and Leinhardt, S. (1976), Local structure in social networks. Sociological Method-
ology, 6, 1–45.

Hollway, J., Lomi, A., Pallotti, F., and Stadtfeld, C. (2017), Multilevel social spaces: The network
dynamics of organizational fields. Network Science, 5, 187–212.

Lospinoso, J.A. and Snijders, T.A.B. (2019), Goodness of fit for stochastic actor-oriented models.
Methodological Innovations, 12:2059799119884282.

Parimalarangan S., Slota, G.M., and Madduri, K. (2017), Fast parallel graph triad census and tri-
angle counting on shared-memory platforms, 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Lake Buena Vista, FL, pp. 1500-1509.

See Also

siena07, sienaGOF

Examples

### For use out of the box:

mynet1 <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)))
mybeh <- sienaDependent(s50a[,1:2], type="behavior")
mycov <- c(rep(1:3,16),1,2) # artificial, just for trying
mydycov <- matrix(rep(1:5, 500), 50, 50) # also artificial, just for trying
mydata <- sienaDataCreate(mynet1, mybeh)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTies, cycle3)
# Shorter phases 2 and 3, just for example:
myalgorithm <- sienaAlgorithmCreate(nsub=1, n3=50, seed=122, projname=NULL)
(ans <- siena07(myalgorithm, data=mydata, effects=myeff, returnDeps=TRUE,

batch=TRUE))

# NULL for the observations:
OutdegreeDistribution(NULL, ans$f, ans$sims, period=1, groupName="Data1",

levls=0:7, varName="mynet1")
dyadicCov(NULL, ans$f, ans$sims, period=1, groupName="Data1",

dc=mydycov, varName="mynet1")
# An arbitrary selection for simulation run i:
IndegreeDistribution(5, ans$f, ans$sims, period=1, groupName="Data1",

varName="mynet1")
BehaviorDistribution(20, ans$f, ans$sims, period=1, groupName="Data1",

varName="mybeh")
sparseMatrixExtraction(50, ans$f, ans$sims, period=1, groupName="Data1",

varName="mynet1")
networkExtraction(40, ans$f, ans$sims, period=1, groupName="Data1",

varName="mynet1")
behaviorExtraction(50, ans$f, ans$sims, period=1, groupName="Data1",

varName="mybeh")



sienaGOF-auxiliary 77

gofi <- sienaGOF(ans, IndegreeDistribution, verbose=TRUE, join=TRUE,
varName="mynet1")

gofi
plot(gofi)

(gofo <- sienaGOF(ans, OutdegreeDistribution, verbose=TRUE, join=TRUE,
varName="mynet1", cumulative=FALSE))

# cumulative is an example of "\dots".
plot(gofo)

(gofdc <- sienaGOF(ans, dyadicCov, verbose=TRUE, join=TRUE,
dc=mydycov, varName="mynet1"))

plot(gofdc)

# How to use dyadicCov for ego-alter combinations of a monadic variable:
mycov.egoalter <- outer(10*mycov, mycov ,'+')
diag(mycov.egoalter) <- 0
dim(mycov.egoalter) # 50 * 50 matrix
# This is a dyadic variable indicating ego-alter combinations of mycov.
# This construction works since mycov has integer values
# not outside the interval from 1 to 9 (actually, only 1 to 3).
# All cells of this matrix contain a two-digit number,
# left digit is row (ego) value, right digit is column (alter) value.
# See the top left part of the matrix:
mycov.egoalter[1:10,1:12]
# The number of values is the square of the number of values of mycov;
# therefore, unwise to do this for a monadic covariate with more than 5 values.
gof.mycov <- sienaGOF(ans, dyadicCov, verbose=TRUE, varName="mynet1",

dc=mycov.egoalter)
plot(gof.mycov)
descriptives.sienaGOF(gof.mycov, showAll=TRUE)

(gofb <- sienaGOF(ans, BehaviorDistribution, varName = "mybeh",
verbose=TRUE, join=TRUE, cumulative=FALSE))

plot(gofb)

(goftc <- sienaGOF(ans, TriadCensus, verbose=TRUE, join=TRUE,
varName="mynet1"))

plot(goftc, center=TRUE, scale=TRUE)
# For this type of auxiliary statistics
# it is advisable in the plot to center and scale.
# note the keys at the x-axis (widen the plot if they are not clear).
descriptives.sienaGOF(goftc)

### The mixed triad census for co-evolution of one-mode and two-mode networks:
actors <- sienaNodeSet(50, nodeSetName="actors")
activities <- sienaNodeSet(20, nodeSetName="activities")
onemodenet <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)),

nodeSet="actors")
# Not meaningful, just for example:
twomodenet <- sienaDependent(array(c(s502[1:50, 1:20], s503[1:50, 1:20]),

dim=c(50, 20, 2)),
type= "bipartite", nodeSet=c("actors", "activities"))



78 sienaGOF-auxiliary

twodata <- sienaDataCreate(onemodenet, twomodenet,
nodeSets=list(actors, activities))

twoeff <- getEffects(twodata)
twoeff <- includeEffects(twoeff, outActIntn, name="onemodenet",

interaction1="twomodenet")
twoeff <- includeEffects(twoeff, outActIntn, name="twomodenet",

interaction1="onemodenet")
twoeff <- includeEffects(twoeff, from, name="onemodenet",

interaction1="twomodenet")
twoeff <- includeEffects(twoeff, to, name="twomodenet",

interaction1="onemodenet")
twoeff
# Shorter phases 2 and 3, just for example:
twoalgorithm <- sienaAlgorithmCreate(projname=NULL, nsub=1, n3=50,

seed=5634)
(ans <- siena07(twoalgorithm, data=twodata, effects=twoeff, returnDeps=TRUE,

batch=TRUE))
(gof.two <- sienaGOF(ans, mixedTriadCensus,

varName=c("onemodenet", "twomodenet"), verbose=TRUE))
plot(gof.two, center=TRUE, scale=TRUE)

## Not run:
### Here come some useful functions for building your own auxiliary statistics:
### First an extraction function.

# igraphNetworkExtraction extracts simulated and observed networks
# from the results of a siena07 run.
# It returns the network as an edge list of class "graph"
# according to the igraph package.
# Ties for ordered pairs with a missing value for wave=period or period+1
# are zeroed;
# note that this also is done in RSiena for calculation of target statistics.
# However, changing structurally fixed values are not taken into account.
igraphNetworkExtraction <- function(i, data, sims, period, groupName, varName) {

require(igraph)
dimsOfDepVar <- attr(data[[groupName]]$depvars[[varName]], "netdims")[1]
missings <- is.na(data[[groupName]]$depvars[[varName]][,,period]) |
is.na(data[[groupName]]$depvars[[varName]][,,period+1])

if (is.null(i)) {
# sienaGOF wants the observation:
original <- data[[groupName]]$depvars[[varName]][,,period+1]
original[missings] <- 0
returnValue <- graph.adjacency(original)

}
else
{

missings <- graph.adjacency(missings)
#sienaGOF wants the i-th simulation:
returnValue <- graph.difference(

graph.empty(dimsOfDepVar) +
edges(t(sims[[i]][[groupName]][[varName]][[period]][,1:2])),

missings)
}



sienaGOF-auxiliary 79

returnValue
}

### Then some auxiliary statistics.

# GeodesicDistribution calculates the distribution of non-directed
# geodesic distances; see ?sna::geodist
# The default for \code{levls} reflects that geodesic distances larger than 5
# do not differ appreciably with respect to interpretation.
# Note that the levels of the result are named;
# these names are used in the \code{plot} method.
GeodesicDistribution <- function (i, data, sims, period, groupName,

varName, levls=c(1:5,Inf), cumulative=TRUE, ...) {
x <- networkExtraction(i, data, sims, period, groupName, varName)
require(network)
require(sna)
a <- sna::geodist(symmetrize(x))$gdist
if (cumulative)
{

gdi <- sapply(levls, function(i){ sum(a<=i) })
}
else
{

gdi <- sapply(levls, function(i){ sum(a==i) })
}
names(gdi) <- as.character(levls)
gdi

}

# Holland and Leinhardt Triad Census from sna; see ?sna::triad.census.
# For undirected networks, call this with levls=1:4
TriadCensus.sna <- function(i, data, sims, period, groupName, varName, levls=1:16){

unloadNamespace("igraph") # to avoid package clashes
require(network)
require(sna)
x <- networkExtraction(i, data, sims, period, groupName, varName)
if (network.edgecount(x) <= 0){x <- symmetrize(x)}
# because else triad.census(x) will lead to an error
tc <- sna::triad.census(x)[levls]
# names are transferred automatically
tc

}

# Holland and Leinhardt Triad Census from igraph; see ?igraph::triad_census.
TriadCensus.i <- function(i, data, sims, period, groupName, varName){

unloadNamespace("sna") # to avoid package clashes
require(igraph)
x <- igraphNetworkExtraction(i, data, sims, period, groupName, varName)

# suppressWarnings is used because else warnings will be generated
# when a generated network happens to be symmetric.

setNames(suppressWarnings(triad_census(x)),
c("003", "012", "102", "021D","021U", "021C", "111D", "111U",
"030T", "030C", "201", "120D", "120U", "120C", "210", "300"))



80 sienaGOF-auxiliary

}

# CliqueCensus calculates the distribution of the clique census
# of the symmetrized network; see ?sna::clique.census.
CliqueCensus<-function (i, obsData, sims, period, groupName, varName, levls = 1:5){

require(sna)
x <- networkExtraction(i, obsData, sims, period, groupName, varName)
cc0 <- sna::clique.census(x, mode='graph', tabulate.by.vertex = FALSE,

enumerate=FALSE)[[1]]
cc <- 0*levls
names(cc) <- as.character(levls)
levels.used <- as.numeric(intersect(names(cc0), names(cc)))
cc[levels.used] <- cc0[levels.used]
cc

}

# Distribution of Bonacich eigenvalue centrality; see ?igraph::evcent.
EigenvalueDistribution <- function (i, data, sims, period, groupName, varName,

levls=c(seq(0,1,by=0.125)), cumulative=TRUE){
require(igraph)
x <- igraphNetworkExtraction(i, data, sims, period, groupName, varName)
a <- igraph::evcent(x)$vector
a[is.na(a)] <- Inf
lel <- length(levls)
if (cumulative)
{

cdi <- sapply(2:lel, function(i){sum(a<=levls[i])})
}
else
{

cdi <- sapply(2:lel, function(i){
sum(a<=levls[i]) - sum(a <= levls[i-1])})

}
names(cdi) <- as.character(levls[2:lel])
cdi

}

## Finally some examples of the three auxiliary statistics constructed above.
mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mybeh <- sienaDependent(s50a, type="behavior")
mydata <- sienaDataCreate(mynet1, mybeh)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, cycle3)
myeff <- includeEffects(myeff, outdeg, name="mybeh", interaction1="mynet1")
myeff <- includeEffects(myeff, outdeg, name="mybeh", interaction1="mynet1")
# Shorter phases 2 and 3, just for example:
myalgorithm <- sienaAlgorithmCreate(nsub=2, n3=200, seed=765, projname=NULL)
(ans2 <- siena07(myalgorithm, data=mydata, effects=myeff, returnDeps=TRUE,

batch=TRUE))
gofc <- sienaGOF(ans2, EigenvalueDistribution, varName="mynet1",

verbose=TRUE, join=TRUE)
plot(gofc)
descriptives.sienaGOF(gofc, showAll=TRUE)



sienaGroupCreate 81

goftc <- sienaGOF(ans2, TriadCensus, varName="mynet1", verbose=TRUE, join=TRUE)
plot(goftc, center=TRUE, scale=TRUE)
# For this type of auxiliary statistics
# it is advisable in the plot to center and scale.
# note the keys at the x-axis; these names are given by sna::triad.census
descriptives.sienaGOF(goftc)
round(descriptives.sienaGOF(goftc))

gofgd <- sienaGOF(ans2, GeodesicDistribution, varName="mynet1",
verbose=TRUE, join=TRUE, cumulative=FALSE)

plot(gofgd)
# and without infinite distances:
gofgdd <- sienaGOF(ans2, GeodesicDistribution, varName="mynet1",

verbose=TRUE, join=TRUE, levls=1:7, cumulative=FALSE)
plot(gofgdd)

## End(Not run)

sienaGroupCreate Function to group together several Siena data objects

Description

Creates an object of class "sienaGroup" from a list of Siena data objects.

Usage

sienaGroupCreate(objlist, singleOK = FALSE, getDocumentation=FALSE)

Arguments

objlist List of objects of class siena.

singleOK Boolean: is it OK to only have one object?
getDocumentation

Flag to allow documentation of internal functions, not for use by users.

Details

This function creates a Siena group object from several Siena data objects (’groups’), all of which
use networks, covariates and actor sets with the same names. The variables must correspond exactly
between all data objects; the numbers of waves may differ. It can be used as data input to siena07
for the multigroup option. Also used internally for convenience with a single Siena data object.

Each covariate should either be centered in all groups, or non-centered in all groups. Centered actor
covariates are re-centered at the overall mean. This means that the original values are used, and
the overall mean of all non-missing observations is subtracted. Note that this implies that group-
dependent variables that are constant for all actors in each group, can be used as centered actor
covariates.



82 sienaGroupCreate

For combining two-wave with more-wave groups in one group object, covariates that are chang-
ing covariates for the more-wave groups have to be specified as changing covariates also for the
two-wave groups. This can be done by specifying them with values for the two waves; for actor
covariates this will be by using an n×2 matrix, for dyadic covariates an n×n×2 array (or n×m×2
for the two-mode case). The values for the second wave should be identical to those for the first
wave (they will be used only for centering operations).

For later use in siena07, it will often (but not always...) be helpful when creating the Siena data
objects in objlist to use allowOnly=FALSE in the call of sienaDependent; see the help page for
this function.

If there are multiple dependent networks, it may be necessary to run sienaDataConstraint before
sienaGroupCreate to ensure that these constraints are equal for all groups.

Value

An object of class sienaGroup; this is a list containing the input objects, with attributes:

netnames names of the dependent variables in each set

symmetric vector of booleans, one for each dependent variable. TRUE if all occurrences of
the network are symmetric.

structural vector of booleans, indicating whether structurally fixed values occur in this
network

allUpOnly vector of booleans, indicating whether changes are all upwards in all the occur-
rences of this network

allDownOnly similar to previous, but for downward changes

anyUpOnly vector of booleans, indicating whether changes are all upwards in any of the
occurrences of this network

anyDownOnly similar to previous, but for downward changes

types vector of network types of the dependent variables

observations Total number of periods to process

periodNos Sequence of numbers of periods which are not skipped in multigroup processing

netnodeSets list of names of the node sets corresponding to the dependent variables

cCovars names of the constant covariates, if any

vCovars names of the changing covariates, if any

dycCovars names of the constant dyadic covariates, if any

dyvCovars names of the changing dyadic covariates, if any

ccnodeSets list of the names of the node sets corresponding to the constant covariates

cvnodeSets list of the names of the node sets corresponding to the changing covariates

dycnodeSets list of the names of the node sets corresponding to the constant dyadic covariates

dyvcnodeSets list of the names of the node sets corresponding to the changing dyadic covari-
ates

compositionChange

boolean: any composition change at all?



sienaGroupCreate 83

exooptions named vector of composition change options for the node sets

names Either from the input objects or "Data1", "Data2" etc

class "sienaGroup" inheriting from "siena"

balmean vector of means for balance calculations

bRange vector of difference between maximum and minimum values for behavior vari-
ables, NA for other dependent variables

behRange matrix of maximum and minimum values for behavior variables, NA for other
dependent variables

bSim vector of similarity means for behavior variables, NA for other dependent vari-
ables

bPoszvar vector of booleans indicating positive variance for behavior variables. NA for
other dependent variables

bMoreThan2 vector of booleans indicating whether the behavior variables take more than 2
distinct values

cCovarPoszvar vector of booleans indicating positive variance for constant covariates
cCovarMoreThan2

vector of booleans indicating whether the constant covariates take more than 2
distinct values

cCovarRange vector of difference between maximum and minimum values for constant co-
variates

cCovarRange2 matrix of maximum and minimum values for constant covariates

cCovarSim vector of similarity means for constant covariates

cCovarMean vector of means for constant covariates

vCovarRange vector of difference between maximum and minimum values for changing co-
variates

vCovarSim vector of similarity means for changing covariates
vCovarMoreThan2

vector of booleans indicating whether the changing covariates take more than 2
distinct values

vCovarPoszvar vector of booleans indicating positive variance for changing covariates

vCovarMean vector of means for changing covariates

dycCovarMean vector of means for constant dyadic covariates

dycCovarRange vector of ranges for constant dyadic covariates

dycCovarRange2 matrix of maximum and minimum values for constant dyadic covariates

dyvCovarRange vector of ranges for changing dyadic covariates

dyvCovarMean vector of means for changing dyadic covariates

anyMissing vector of booleans, one for each dependent variable, indicating the presence of
any missing values

netRanges matrix of maximum and minimum values for dependent networks, NA for be-
havior variables



84 sienaNodeSet

Author(s)

Ruth Ripley, Modification by Tom Snijders

References

See the Section on Multi-group Siena analysis in the manual available from https://www.stats.
ox.ac.uk/~snijders/siena/.

See Also

sienaDataCreate, sienaDataConstraint

Examples

Group1 <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
Group3 <- sienaDependent(array(c(N3403, HN3403), dim=c(37, 37, 2)))
Group4 <- sienaDependent(array(c(N3404, HN3404), dim=c(33, 33, 2)))
Group6 <- sienaDependent(array(c(N3406, HN3406), dim=c(36, 36, 2)))
# Illustration of the use of group-level variables:
# dum1 is a dummy variable for group 1,
# having constant value 1 in group 1, and constant value 0 in the other groups.
dum1.1 <- coCovar(c(rep(1,45)), warn = FALSE)
dum1.3 <- coCovar(c(rep(0,37)), warn = FALSE)
dum1.4 <- coCovar(c(rep(0,33)), warn = FALSE)
dum1.6 <- coCovar(c(rep(0,36)), warn = FALSE)
# In a similar way, dummies for the other groups can be defined.
dataset.1 <- sienaDataCreate(Friends = Group1, dum1 = dum1.1)
dataset.3 <- sienaDataCreate(Friends = Group3, dum1 = dum1.3)
dataset.4 <- sienaDataCreate(Friends = Group4, dum1 = dum1.4)
dataset.6 <- sienaDataCreate(Friends = Group6, dum1 = dum1.6)
(FourGroups <- sienaGroupCreate(list(dataset.1, dataset.3, dataset.4,

dataset.6)))
class(FourGroups)
# The main effect of the group-level variable is the \code{egoX} effect:
myeff <- getEffects(FourGroups)
(myeff <- includeEffects(myeff, egoX, interaction1 = "dum1"))

sienaNodeSet Function to create a node set

Description

Creates a Siena node set which can be used as the nodes in a Siena network.

Usage

sienaNodeSet(n, nodeSetName="Actors", names=NULL)

https://www.stats.ox.ac.uk/~snijders/siena/
https://www.stats.ox.ac.uk/~snijders/siena/


sienaTimeTest 85

Arguments

n integer, size of set.

nodeSetName character string naming the node set.

names optional character string vector of length n of the names of the nodes.

Details

This function is important for data sets having more than one node set, but not otherwise.

Value

Returns a Siena node set, an integer vector, possibly with names, plus the attributes, class equal to
"sienaNodeSet", and nodeSetName equal to the argument nodeSetName.

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaDependent, sienaDataCreate

Examples

senders <- sienaNodeSet(50, nodeSetName="senders")
receivers <- sienaNodeSet(30, nodeSetName="receivers")
senders.attribute <- coCovar(rep(1:10, each=5), nodeSet="senders")
receivers.attribute <- coCovar(rep(1:5, each=6), nodeSet="receivers")
mynet <- sienaDependent(array(c(s501[,1:30], s502[,1:30]), dim=c(50, 30, 2)),

nodeSet=c("senders", "receivers"))
(mydata <- sienaDataCreate(mynet, senders.attribute, receivers.attribute,

nodeSets=list(senders, receivers)))

sienaTimeTest Functions to assess and account for time heterogeneity of parameters

Description

Takes a sienaFit object estimated by Method of Moments, and tests for time heterogeneity by the
addition of interactions with time dummy variables at waves m=2...(M-1). The test used is the
score-type test of Schweinberger (2012).

Tests for joint significance, parameter-wise significance, period-wise significance, individual sig-
nificance, and one-step estimates of the unrestricted model parameters are returned in a list.

https://www.stats.ox.ac.uk/~snijders/siena/


86 sienaTimeTest

Usage

sienaTimeTest(sienaFit, effects=NULL, excludedEffects=NULL, condition=FALSE)

Arguments

sienaFit A sienaFit object returned by siena07.

effects Optional vector of effect numbers to test. Use the numbering on the print of the
sienaFit object.

excludedEffects

Optional vector of effect numbers for which time heterogeneity is not to be
tested. Use the numbering on the print of the sienaFit object.

condition Whether to orthogonalize effect-wise score-type tests and individual signifi-
cance tests against estimated effects and un-estimated dummy terms, or just
against estimated effects.

Details

This test follows the score type test of Schweinberger (2012) as elaborated by Lospinoso et al.
(2011) by using statistics already calculated at each wave to obtain vectors of partitioned moment
functions corresponding to a restricted model (the model in the sienaFit object; used as null
hypothesis) and an unrestricted model (which contains dummies for waves m=2...(M-1); used as
alternative hypothesis).

condition=TRUE leads to a rough-and-easy approximation to controlling the mentioned tests also
for the unestimated effects.

After assessing time heterogeneity, effects objects can be modified by adding numbers of all or
some periods to the timeDummy column. This is facilitated by the includeTimeDummy function. For
an effects object in which the timeDummy column of some of the included effects includes some or
all period numbers, interactions of those effects with time dummies for the indicated periods will
also be estimated.

An alternative to the use of includeTimeDummy is to define time-dependent actor covariates (dummy
variables or other functions of wave number that are the same for all actors), include these in the
data set through sienaAlgorithmCreate, and include interactions of other effects with ego effects
of these time-dependent actor covariates by includeInteraction. This is illustrated in an exam-
ple below. Using includeTimeDummy is easier; using self-defined interactions with time-dependent
variables gives more control.

If you wish to use this function with sienaFit objects that use the finite differences method of
derivative estimation, or which use maximum likelihood estimation, you must request the deriva-
tives to be returned by wave using the byWave=TRUE option for siena07.

Effects leading to dummy interactions that are collinear with the model originally fitted, after ex-
cluding the effects mentioned, will be automatically excluded from the time heterogeneity testing.

If sienaTimeTest gives errors that there are too many collinear effects, run it with a smaller set of
effects as specified by the effects parameter. For example, if the model has 40 effects of which
the first 8 are rate parameters and therefore uninteresting, and there is such an error message, try
effects=9:30; if that still does not work, decrease the upper limit of 30, if it does work increase
it, to find the largest possible set of effects for which heterogeneity assessment still is possible; then
as a next step try the remaining effects in a similar way.



sienaTimeTest 87

Also if the execution is time-consuming, e.g., for a multi-group sienaFit object with many groups
and many effects, it can be helpful to carry out the function in smaller subsets of effects.

Value

sienaTimeTest returns a list containing many items, including the following:

JointTest A chi-squared test for joint significance of the dummies.

EffectTest A chi-squared test for joint significance across dummies for each separate effect.

GroupTest A chi-squared test for joint significance across dummies; if sienaFit is a fit
for a multi-group object then these refer to each group; else they refer to ecah
period.

IndividualTest A matrix displaying initial estimates, one-step estimates, and p-values for the
individual interactions.

Author(s)

Josh Lospinoso, Tom Snijders

References

J.A. Lospinoso, M. Schweinberger, T.A.B. Snijders, and R.M. Ripley (2011), Assessing and Ac-
counting for Time Heterogeneity in Stochastic Actor Oriented Models. Advances in Data Analysis
and Computation, 5, 147–176.

M. Schweinberger (2012), Statistical modeling of network panel data: Goodness-of-fit. British
Journal of Statistical and Mathematical Psychology 65, 263–281.

See Also

siena07, plot.sienaTimeTest, includeTimeDummy

Examples

## Estimate a restricted model
myalgorithm <- sienaAlgorithmCreate(nsub=1, n3=50, projname=NULL)
# Short estimation not for practice, just for having a quick demonstration
mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip)
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE)

## Conduct the score-type test to assess whether heterogeneity is present.
tt <- sienaTimeTest(ans)
summary(tt)

## Suppose that we wish to include time dummies.
## Add them in the following way:
myeff <- includeTimeDummy(myeff, recip, transTrip, timeDummy="2")
ans2 <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE)



88 sienaTimeTest

## Re-assess the time heterogeneity
(tt2 <- sienaTimeTest(ans2))

## And so on..

## A demonstration of the plotting facilities, on a larger dataset:
## (Of course pasting these identical sets of three waves after each other
## in a sequence of six is not really meaningful. It's just a demonstration.)

myalgorithm <- sienaAlgorithmCreate(nsub=1, n3=50, seed=654, projname=NULL)
mynet1 <- sienaDependent(array(c(s501, s502, s503, s501, s503, s502),

dim=c(50, 50, 6)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, balance)
myeff <- includeTimeDummy(myeff, density, timeDummy="all")
myeff <- includeTimeDummy(myeff, recip, timeDummy="2,3,5")
myeff <- includeTimeDummy(myeff, balance, timeDummy="4")
## Not run:
(ansp <- siena07(myalgorithm, data=mydata, effects=myeff))
ttp <- sienaTimeTest(ansp, effects=1:4)

## Pairwise plots show
plot(ttp, pairwise=TRUE)

## Time test plots show
plot(ttp, effects=1:4, dims=c(2,2))

## End(Not run)

## Instead of working with includeTimeDummy,
## you can also define time dummies explicitly;
## this may give more control and more clarity:
dum2 <- matrix(c(0,1,0,0,0), nrow=50, ncol=5, byrow=TRUE)
dum3 <- matrix(c(0,0,1,0,0), nrow=50, ncol=5, byrow=TRUE)
dum4 <- matrix(c(0,0,0,1,0), nrow=50, ncol=5, byrow=TRUE)
dum5 <- matrix(c(0,0,0,0,1), nrow=50, ncol=5, byrow=TRUE)
time2 <- varCovar(dum2)
time3 <- varCovar(dum3)
time4 <- varCovar(dum4)
time5 <- varCovar(dum5)
mydata <- sienaDataCreate(mynet1, time2, time3, time4, time5)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, balance)
## corresponding to includeTimeDummy(myeff, density, timeDummy="all"):
myeff <- includeEffects(myeff, egoX, interaction1='time2')
myeff <- includeEffects(myeff, egoX, interaction1='time3')
myeff <- includeEffects(myeff, egoX, interaction1='time4')
myeff <- includeEffects(myeff, egoX, interaction1='time5')
## corresponding to myeff <- includeTimeDummy(myeff, recip, timeDummy="2,3,5"):
myeff <- includeInteraction(myeff, egoX, recip, interaction1=c('time2', ''))
myeff <- includeInteraction(myeff, egoX, recip, interaction1=c('time3', ''))



simstats0c 89

myeff <- includeInteraction(myeff, egoX, recip, interaction1=c('time5', ''))
## corresponding to myeff <- includeTimeDummy(myeff, balance, timeDummy="4"):
myeff <- includeInteraction(myeff, egoX, balance, interaction1=c('time4', ''))
## Not run:
(anspp <- siena07(myalgorithm, data=mydata, effects=myeff))
## anspp contains identical results as ansp above.

## End(Not run)

## A demonstration of RateX heterogeneity.
## Not run:
mynet1 <- sienaDependent(array(c(s501, s502, s503), dim=c(50, 50, 3)))
myccov <- coCovar(s50a[,1])
mydata <- sienaDataCreate(mynet1, myccov)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, balance)
myeff <- includeTimeDummy(myeff, RateX, type="rate", interaction1="myccov")
(ans <- siena07(myalgorithm, data=mydata, effects=myeff))

## End(Not run)

simstats0c Versions of FRAN

Description

The functions to be called as "FRAN" by siena07. They call compiled C++. Not for general users’
use.

Usage

simstats0c(z, x, data=NULL, effects=NULL, fromFiniteDiff=FALSE,
returnDeps=FALSE, returnChains=FALSE, byWave=FALSE,
returnDataFrame=FALSE, returnLoglik=FALSE)

maxlikec(z, x, data=NULL, effects=NULL,
returnChains=FALSE, byGroup = FALSE, byWave=FALSE,
returnDataFrame=FALSE, returnLoglik=FALSE,
onlyLoglik=FALSE)

initializeFRAN(z, x, data, effects, prevAns = NULL, initC,
profileData = FALSE, returnDeps = FALSE, returnChains =
FALSE, byGroup = FALSE, returnDataFrame = FALSE,
byWave = FALSE, returnLoglik = FALSE, onlyLoglik = FALSE)

terminateFRAN(z, x)

Arguments

z Control object, passed in automatically in siena07.

x A sienaAlgorithm object, passed in automatically in siena07.



90 simstats0c

data A sienaData object as returned by sienaDataCreate.

effects A sienaEffects object as returned by getEffects.

fromFiniteDiff Boolean used during calculation of derivatives by finite differences. Not for user
use.

returnDeps Boolean. Whether to return the simulated networks in Phase 3.

returnChains Boolean. Whether to return the chains.

byWave Boolean. Whether to return the finite difference or maximum likelihood deriva-
tives by wave (uses a great deal of memory). Only necessary for sienaTimeTest

byGroup Boolean. For internal use: allows different thetas for each group to be used in
sienaBayes.

returnDataFrame

Boolean. Whether to return the chains as lists or data frames.

returnLoglik Boolean. Whether to return the log likelihood of the simulated chain.

onlyLoglik Boolean: whether to return just the likelihood for the simulated chain, plus de-
tails of steps accepted and rejected.

prevAns An object of class "sienaFit" as returned by siena07, from which scaling in-
formation (derivative matrix and standard deviation of the deviations) will be
extracted along with the latest version of the parameters which will be used as
the initial values, unless the model requests the use of standard initial values.
If the previous model is exactly the same as the current one, Phase 1 will be
omitted. If not, any parameter estimates for effects which are included in the
new model will be used as initial values, but phase 1 will still be carried out. If
the results used as prevAns are a reasonable starting point, this will increase the
efficiency of the algorithm.

initC If TRUE, call is to setup the data and model in C++. For use with multiple
processes only.

profileData Boolean to force dumping of the data for profiling with sienaProfile.exe.

Details

Not for general users’ use.
The name of simstats0c or maxlikec should be used for the element FRAN of the model object,
the former when using estimation by forward simulation, the latter for maximum likelihood estima-
tion. The arguments with no defaults must be passed in on the call to siena07. initializeFRAN
and terminateFRAN are called in both cases.

Value

simstats0c returns a list containing:

fra Simulated statistics.

sc Scores with which to calculate the derivative (not phase 2 or if using finite dif-
ferences or maximum likelihood).

dff Contributions to the derivative if finite differences

ntim For conditional processing, time taken.



simstats0c 91

feasible Currently set to TRUE.

OK Could be set to FALSE if serious error has occurred.

sims A list of simulation results, one for each period. Each list consists of a list for
each data object, each of which consists of a list for each network, each of which
consists of a list for each period, each component of which is an edgelist in
matrix form (the columns are from, to, value) (or vector for behavior variables).
Only if returnDeps is TRUE.

maxlikec returns a list containing:

fra Simulated scores.

dff Simulated Hessians: stored as lower triangular matrices

ntim NULL, compatibility only

feasible Currently set to TRUE.

OK Could be set to FALSE if serious error has occurred.

dff Simulated Hessian

sims NULL, for compatibility only

chain A list of sampled chains, one for each period. Each list consists of a list for each
data object, each of which consists of a list for each network, each of which
consists of a list for each period, each component of which is a list or a data
frame depending on the value of returnDataFrame. Only if returnChainss is
TRUE.

accepts Number of accepted MH steps by dependent variable (permute steps are counted
under first dependent variable)

rejects Number of rejected MH steps by dependent variable (permute steps are counted
under first dependent variable)

aborts Number of aborted MH steps counted under first dependent variable.

loglik Loglikelihood of the simulations. Only if returnLoglik is TRUE. If onlyLoglik
is TRUE, only loglik, accepts,rejects and aborts are returned.

initializeFRAN and terminateFRAN return the control object z.

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

siena07

https://www.stats.ox.ac.uk/~snijders/siena/


92 summary.iwlsm

Examples

mynet1 <- sienaNet(array(c(tmp3, tmp4), dim=c(32, 32, 2)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip)
myalgorithm <- sienaAlgorithmCreate(fn=simstats0c, nsub=2, n3=100, projname=NULL)
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE)

summary.iwlsm Summary method for Iterative Weighted Least Squares Models

Description

summary method for objects of class "iwlsm"

Usage

## S3 method for class 'iwlsm'
summary(object, method = c("XtX", "XtWX"),
correlation = FALSE, ...)

Arguments

object the fitted model. This is assumed to be the result of some fit that produces an
object inheriting from the class iwlsm, in the sense that the components returned
by the iwlsm function will be available.

method Should the weighted (by the IWLS weights) or unweighted cross-products ma-
trix be used?

correlation logical. Should correlations be computed (and printed)?

... arguments passed to or from other methods.

Details

This function is a method for the generic function summary() for class "iwlsm". It can be invoked
by calling summary(x) for an object x of the appropriate class, or directly by calling summary.iwlsm(x)
regardless of the class of the object.

Value

If printing takes place, only a null value is returned. Otherwise, a list is returned with the following
components. Printing always takes place if this function is invoked automatically as a method for
the summary function.

correlation The computed correlation coefficient matrix for the coefficients in the model.

cov.unscaled The unscaled covariance matrix; i.e, a matrix such that multiplying it by an
estimate of the error variance produces an estimated covariance matrix for the
coefficients.



summary.iwlsm 93

sigma The scale estimate.

stddev A scale estimate used for the standard errors.

df The number of degrees of freedom for the model and for residuals.

coefficients A matrix with three columns, containing the coefficients, their standard errors
and the corresponding t statistic.

terms The terms object used in fitting this model.

Author(s)

Adapted by Ruth Ripley

References

Venables, W. N. and Ripley, B. D. (2002), Modern Applied Statistics with S. Fourth edition. Springer.
See also https://www.stats.ox.ac.uk/~snijders/siena/

See Also

summary

Examples

## Not run:
##not enough data here for a sensible example, but shows the idea.
myalgorithm <- sienaAlgorithmCreate(nsub=2, n3=100)
mynet1 <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)))
mynet2 <- sienaDependent(array(c(s502, s503), dim=c(50, 50, 2)))
mydata1 <- sienaDataCreate(mynet1)
mydata2 <- sienaDataCreate(mynet2)
myeff1 <- getEffects(mydata1)
myeff2 <- getEffects(mydata2)
myeff1 <- setEffect(myeff1, transTrip, fix=TRUE, test=TRUE)
myeff2 <- setEffect(myeff2, transTrip, fix=TRUE, test=TRUE)
myeff1 <- setEffect(myeff1, cycle3, fix=TRUE, test=TRUE)
myeff2 <- setEffect(myeff2, cycle3, fix=TRUE, test=TRUE)
ans1 <- siena07(myalgorithm, data=mydata1, effects=myeff1, batch=TRUE)
ans2 <- siena07(myalgorithm, data=mydata2, effects=myeff2, batch=TRUE)
meta <- siena08(ans1, ans2)
metadf <- split(meta$thetadf, meta$thetadf$effects)[[1]]
metalm <- iwlsm(theta ~ tconv, metadf, ses=se^2)
summary(metalm)

## End(Not run)

https://www.stats.ox.ac.uk/~snijders/siena/


94 tmp4

tmp3 van de Bunt’s Freshman dataset, time point 3

Description

Third timepoint of van de Bunt’s freshman dataset.

Codes: 1 = best friendship; 2 = friendship; 3 = friendly relationship; 4 = neutral relationship; 5 =
troubled relationship; 0 = unknown person.

Format

Adjacency matrix for the "at least friendly relationship" network at time point 3.

Source

vrnd32t3.dat from https://www.stats.ox.ac.uk/~snijders/siena/vdBunt_data.zip

References

Van de Bunt, G.G., van Duijn, M.A.J., and Snijders, T.A.B. (1999), Friendship networks through
time: An actor-oriented statistical network model. Computational and Mathematical Organization
Theory, 5, 167–192.

Also see https://www.stats.ox.ac.uk/~snijders/siena/vdBunt_data.htm.

See Also

tmp4

tmp4 van de Bunt’s Freshman dataset, time point 4

Description

Fourth timepoint of van de Bunt’s freshman dataset.

Codes: 1 = best friendship; 2 = friendship; 3 = friendly relationship; 4 = neutral relationship; 5 =
troubled relationship; 0 = unknown person.

Format

Adjacency matrix for the "at least friendly relationship" network at time point 4.

Source

vrnd32t4.dat from https://www.stats.ox.ac.uk/~snijders/siena/vdBunt_data.zip

https://www.stats.ox.ac.uk/~snijders/siena/vdBunt_data.zip
https://www.stats.ox.ac.uk/~snijders/siena/vdBunt_data.htm
https://www.stats.ox.ac.uk/~snijders/siena/vdBunt_data.zip


updateTheta 95

References

Van de Bunt, G.G., van Duijn, M.A.J., and Snijders, T.A.B. (1999), Friendship networks through
time: An actor-oriented statistical network model. Computational and Mathematical Organization
Theory, 5, 167–192.

Also see https://www.stats.ox.ac.uk/~snijders/siena/vdBunt_data.htm.

See Also

tmp3

updateTheta A function to update the initial values of theta, and a function to update
an effects object.

Description

updateTheta copies the final values of any matching selected effects from a sienaFit object to a
Siena effects object.
updateSpecification includes in a Siena effects object a set of effects that are included in another
effects object.

Usage

updateTheta(effects, prevAns, varName=NULL)
updateSpecification(effects.to, effects.from,

effects.extra=NULL, name.to=NULL, name.from=NULL)

Arguments

effects Object of class sienaEffects.

prevAns Object of class sienaFit as returned by siena07.

varName Character string or vector of character strings; is this is not NULL, the update will
only applied to this dependent variable / these dependent variables.

effects.to Object of class sienaEffects.

effects.from Object of class sienaEffects.

effects.extra Object of class sienaEffects.

name.to Character string, name of dependent variable in object.to.

name.from Character string, name of dependent variable in object.from.

https://www.stats.ox.ac.uk/~snijders/siena/vdBunt_data.htm


96 updateTheta

Details

The initial values of any selected effects in the input effects object which match an effect estimated
in prevAns will be updated by updateTheta. If the previous run was conditional, the estimated
rate parameters for the dependent variable on which the run was conditioned are added to the final
value of theta. If varName is not NULL, this update is restricted to effects for the dependent variable/s
specified by varName.
By updateSpecification, the effects included in effects.from are also included in effects.to;
if name.to and/or name.from is specified, this is restricted to effects for those dependent variables.
If effects.from contains interaction effects, the corresponding main effects will be looked for
in effects.from; if they are not found there, they will be looked for in effects.extra. It is
not guaranteed that this will be successful. For effects.extra, it is best to use an effects object
constructed for the same data set as effects.from, and by the same version of RSiena.

Value

Updated effects object.

Note

Using updateTheta explicitly before calling siena07 rather than using it via the argument prevAns
of siena07 will not permit the use of the previous derivative matrix. In most cases, using siena07
with prevAns will be more efficient.

Author(s)

Ruth Ripley, Tom A.B. Snijders

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

siena07, getEffects

Examples

## For updateTheta:
mynet1 <- sienaDependent(array(c(tmp3, tmp4), dim=c(32, 32, 2)))
mydata <- sienaDataCreate(mynet1)
myeff1 <- getEffects(mydata)
myeff1 <- includeEffects(myeff1, transTrip)
myeff1 <- includeInteraction(myeff1, recip, inPop)
myalgorithm <- sienaAlgorithmCreate(nsub=1, n3=100, projname=NULL)
ans <- siena07(myalgorithm, data=mydata, effects=myeff1, batch=TRUE)
ans$theta
(myeff <- updateTheta(myeff1, ans))
##
## For updateSpecification:
myeff2 <- getEffects(mydata)

https://www.stats.ox.ac.uk/~snijders/siena/


varCovar 97

myeff2 <- includeEffects(myeff2, outAct)
updateSpecification(myeff2, myeff1)

varCovar Function to create a changing covariate object.

Description

This function creates a changing covariate object from a matrix.

Usage

varCovar(val, centered=TRUE, nodeSet="Actors", warn=TRUE,
imputationValues=NULL)

Arguments

val Matrix of covariate values, one row for each actor, one column for each period.

centered Boolean: if TRUE, then the overall mean value is subtracted.

nodeSet Character string containing the name of the associated node set. If the entire
data set contains more than one node set, then the node sets must be specified in
all data objects.

warn Logical: is a warning given if all values are NA, or all non-missing values are the
same.

imputationValues

Matrix of covariate values of same dimensions as vala, to be used for imputation
of NA values (if any) in val. Must not contain any NA.

Details

When part of a Siena data object, the covariate is assumed to be associated with node set nodeSet
of the Siena data object. In practice, the node set needs to be specified only in the case of the use of
the covariate with a two-mode network.
If there are any NA values in val, and imputationValues is given, then the corresponding elements
of imputationValues are used for imputation. If imputationValues is NULL, imputation is by
the overall mean value. In both cases, cases with imputed values are not used for calculating target
statistics (see the manual).
The value of the changing covariate for wave m is supposed in the simulations to be valid in the
whole period from wave m to wave m+1. If the data set has M waves, this means that the values, if
any, for wave M will not be used. Therefore, the number of columns can be M or M-1; if the former,
the values in the last column will not be used.

Value

Returns the covariate as an object of class "varCovar", in which form it can be used as an argument
to sienaDataCreate.



98 varDyadCovar

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaDataCreate, coCovar, coDyadCovar, varDyadCovar, sienaNodeSet

Examples

myvarCovar <- varCovar(s50a)
senders <- sienaNodeSet(50, nodeSetName="senders")
receivers <- sienaNodeSet(30, nodeSetName="receivers")
senders.covariate <- varCovar(s50a, nodeSet="senders")
receivers.covariate <- varCovar(s50s[1:30,], nodeSet="receivers")

varDyadCovar Function to create a changing dyadic covariate object.

Description

This function creates a changing dyadic covariate object from an array.

Usage

varDyadCovar(val, centered=TRUE, nodeSets=c("Actors", "Actors"),
warn=TRUE, sparse=is.list(val), type=c("oneMode", "bipartite"))

Arguments

val Array of covariate values, third dimension is the time. Alternatively, a list of
sparse matrices of type "TsparseMatrix".

centered Boolean: if TRUE, then the overall mean value is subtracted.

nodeSets Names (character string) of the associated node sets. If the entire data set con-
tains more than one node set, then the node sets must be specified in all data
objects.

warn Logical: is a warning given if, for non-sparse input, all values are NA, or all
non-missing values are the same.

sparse Boolean: whether sparse matrices or not.

type oneMode or bipartite: whether the matrix refers to a one-mode or a bipartite
(two-mode) network.

https://www.stats.ox.ac.uk/~snijders/siena/


Wald 99

Details

When part of a Siena data object, the covariate is assumed to be associated with the node sets named
NodeSets of the Siena data object. The names of the associated node sets will only be checked when
the Siena data object is created. In practice, the node set needs to be specified only in the case of
the use of the covariate with a two-mode network.
The value of the changing covariate for wave m is supposed in the simulations to be valid in the
whole period from wave m to wave m+1. If the data set has M waves, this means that the values, if
any, for wave M will not be used. Therefore, the number of columns can be M or M-1; if the former,
the values in the last column will not be used.

Value

Returns the covariate as an object of class "varDyadCovar", in which form it can be used as an
argument to SienaDataCreate.

Author(s)

Ruth Ripley

References

See https://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaDataCreate, coDyadCovar, coCovar, varCovar, sienaNodeSet

Examples

mydyadvar <- varDyadCovar(array(c(s501, s502), dim=c(50, 50, 2)))

Wald Wald and score tests for RSiena results

Description

These functions test parameters in RSiena results estimated by siena07. Tests can be Wald-type (if
the parameters were estimated) or score-type tests (if the parameters were fixed and tested).

Usage

Wald.RSiena(A, ans)

Multipar.RSiena(ans, ...)

score.Test(ans, test=ans$test)

testSame.RSiena(ans, e1, e2)

https://www.stats.ox.ac.uk/~snijders/siena/


100 Wald

Arguments

A A k * p matrix, where p = ans$pp, the number of parameters in ans excluding
the basic rate parameters used for conditional estimation.

ans An object of class sienaFit, resulting from a call to siena07.

... One or more integer numbers between 1 and p, specifying the tested effects
(numbered as in print(ans); if conditional estimation was used, numbered as
the ’Other parameters’).

test One or more integer numbers between 1 and p, or a logical vector of length p;
these should specify the tested effects (numbered as described for the . . . ).

e1, e2 Each an integer number between 1 and p, or a vector of such numbers; the
hypothesis tested is that the parameters for effects with number/s e1 are equal to
those in e2.

Details

Wald.RSiena produces a Wald-type test, applicable to estimated parameters. Multipar.RSiena
and testSame.RSiena are special cases of Wald.RSiena. The hypothesis tested by Wald.RSiena
is Aθ = 0, where θ is the parameter estimated in the process leading to ans.

The hypothesis tested by Multipar.RSiena is that all parameters given in . . . are 0.

The hypothesis tested by testSame.RSiena is that all parameters given in e1 are equal to those in
e2.

score.Test produces a score-type test. The tested effects for score.Test should have been speci-
fied in includeEffects or setEffect with fix=TRUE, test=TRUE, i.e., they should not have been
estimated. The hypothesis tested by score.Test is that the tested parameters have the value indi-
cated in the effects object used for obtaining ans.

These tests should be carried out only when convergence is adequate (overall maximum conver-
gence ratio less than 0.25 and all t-ratios for convergence less than 0.1 in absolute value).

These functions have their own print method, see print.sienaTest.

Value

An object of class sienaTest, which is a list with elements:

chisquare: The test statistic, assumed to have a chi-squared null distribution.

df: The degrees of freedom.

pvalue: The associated p-value.

onesided: For df=1, the onesided test statistic.

efnames: For Multipar.RSiena and score.Test, the names of the tested effects.

Author(s)

Tom Snijders



xtable 101

References

See the manual and https://www.stats.ox.ac.uk/~snijders/siena/

M. Schweinberger (2012). Statistical modeling of network panel data: Goodness-of-fit. British
Journal of Statistical and Mathematical Psychology 65, 263–281.

See Also

siena07, print.sienaTest

Examples

mynet <- sienaDependent(array(c(s501, s502), dim=c(50, 50, 2)))
mydata <- sienaDataCreate(mynet)
myeff <- getEffects(mydata)
myalgorithm <- sienaAlgorithmCreate(nsub=1, n3=40, seed=1777, projname=NULL)
# nsub=1 and n3=40 is used here for having a brief computation,
# not for practice.
myeff <- includeEffects(myeff, transTrip, transTies)
myeff <- includeEffects(myeff, outAct, outPop, fix=TRUE, test=TRUE)
(ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE))
A <- matrix(0, 2, 6)
A[1, 3] <- 1
A[2, 4] <- 1
wa <- Wald.RSiena(A, ans)
wa
# A shortcut for the above is:
Multipar.RSiena(ans, 3, 4)
# The following two are equivalent:
sct <- score.Test(ans, c(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE))
sct <- score.Test(ans,6)
print(sct)
# Getting all 1-df score tests separately:
for (i in which(ans$test)){

sct <- score.Test(ans,i)
print(sct)}

# Testing that endowment and creation effects are identical:
myeff1 <- getEffects(mydata)
myeff1 <- includeEffects(myeff1, recip, include=FALSE)
myeff1 <- includeEffects(myeff1, recip, type='creation')
(myeff1 <- includeEffects(myeff1, recip, type='endow'))
(ans1 <- siena07(myalgorithm, data=mydata, effects=myeff1, batch=TRUE))
testSame.RSiena(ans1, 2, 3)

xtable Access xtable in package xtable

Description

Dummy function to allow access to xtable in package xtable

https://www.stats.ox.ac.uk/~snijders/siena/


102 xtable

Usage

xtable(x, ...)

Arguments

x sienaFit object

... Other arguments for xtable.sienaFit

Value

Value returned from xtable.sienaFit

Author(s)

Ruth Ripley

References

https://www.stats.ox.ac.uk/~snijders/siena/

See Also

xtable.sienaFit

Examples

## The function is currently defined as
function (x, ...)
{

xtable::xtable(x, ...)
}

## Not run:
myalgorithm <- sienaAlgorithmCreate(nsub=2, n3=100)
mynet1 <- sienaDependent(array(c(tmp3, tmp4), dim=c(32, 32, 2)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE)
ans
summary(ans)
xtable(ans, type="html", file="ans.html")
## End(Not run)

https://www.stats.ox.ac.uk/~snijders/siena/


Index

∗ classes
coCovar, 6
coDyadCovar, 7
getEffects, 12
includeEffects, 16
includeGMoMStatistics, 18
includeInteraction, 19
setEffect, 40
sienaAlgorithmCreate, 53
sienaCompositionChange, 58
sienaDataConstraint, 60
sienaDataCreate, 61
sienaDependent, 63
sienaGroupCreate, 81
sienaNodeSet, 84
varCovar, 97
varDyadCovar, 98

∗ datasets
allEffects, 5
hn3401, 15
n3401, 27
s50, 36
s501, 37
s502, 37
s503, 38
s50a, 39
s50s, 39
tmp3, 94
tmp4, 94

∗ estimation
siena07, 43

∗ methods
edit.sienaEffects, 9
plot.sienaTimeTest, 28
sienaFit.methods, 65
summary.iwlsm, 92

∗ models
includeTimeDummy, 22
iwlsm, 24

siena07, 43
siena08, 50
sienaGOF, 67
sienaGOF-auxiliary, 73
simstats0c, 89
updateTheta, 95

∗ package
RSiena-package, 3

∗ plot
funnelPlot, 11

∗ print
effectsDocumentation, 10
print.sienaEffects, 30
print.sienaMeta, 31
print.sienaTest, 34
print01Report, 35
xtable, 101

∗ tests
sienaTimeTest, 85
Wald, 99

allEffects, 5

BehaviorDistribution, 70
BehaviorDistribution

(sienaGOF-auxiliary), 73
behaviorExtraction

(sienaGOF-auxiliary), 73

coCovar, 3, 6, 8, 61, 62, 98, 99
coDyadCovar, 3, 7, 7, 61, 62, 98, 99

data.frame, 16, 41
descriptives.sienaGOF (sienaGOF), 67
dyadicCov, 70
dyadicCov (sienaGOF-auxiliary), 73

edit.data.frame, 13
edit.sienaEffects, 9
effectsDocumentation, 10, 14, 15, 17,

20–23, 31, 42

103



104 INDEX

fix, 13
funnelPlot, 11, 32, 52

getEffects, 3, 9, 11, 12, 16–23, 31, 41, 42,
90, 96

HN3401 (hn3401), 15
hn3401, 15
HN3403 (hn3401), 15
HN3404 (hn3401), 15
HN3406 (hn3401), 15

includeEffects, 3, 10, 11, 13, 15, 16, 19,
21–23, 31, 41, 42, 45, 100

includeGMoMStatistics, 15, 17, 18, 30, 31,
42, 44

includeInteraction, 3, 10, 11, 13, 14, 17,
19, 19, 23, 42, 86

includeTimeDummy, 22, 23, 41, 86, 87
IndegreeDistribution, 70
IndegreeDistribution

(sienaGOF-auxiliary), 73
initializeFRAN, 45
initializeFRAN (simstats0c), 89
iwlsm, 24, 51, 52

lm, 25
lqs, 25

Matrix, 63
maxlikec (simstats0c), 89
meta.table, 52
meta.table (print.sienaMeta), 31
mixedTriadCensus, 70
mixedTriadCensus (sienaGOF-auxiliary),

73
model.create (sienaAlgorithmCreate), 53
Multipar.RSiena, 34, 45, 48
Multipar.RSiena (Wald), 99

N3401 (n3401), 27
n3401, 27
N3403 (n3401), 27
N3404 (n3401), 27
N3406 (n3401), 27
na.omit, 25
networkExtraction (sienaGOF-auxiliary),

73

options, 25

OutdegreeDistribution, 70
OutdegreeDistribution

(sienaGOF-auxiliary), 73

plot.sienaGOF (sienaGOF), 67
plot.sienaMeta (print.sienaMeta), 31
plot.sienaTimeTest, 28, 87
predict.iwlsm (iwlsm), 24
print.iwlsm (iwlsm), 24
print.sienaEffects, 15, 17, 19, 30, 42
print.sienaFit, 48
print.sienaFit (sienaFit.methods), 65
print.sienaMeta, 12, 31, 52
print.sienaTest, 34, 100, 101
print.summary.iwlsm (summary.iwlsm), 92
print.summary.sienaEffects

(print.sienaEffects), 30
print.summary.sienaFit

(sienaFit.methods), 65
print.summary.sienaMeta

(print.sienaMeta), 31
print.xtable, 66, 67
print.xtable.sienaFit

(sienaFit.methods), 65
print01Report, 35, 62, 63
psi.iwlsm (iwlsm), 24

RSiena (RSiena-package), 3
RSiena-package, 3

s50, 36, 38
s501, 36, 37, 38–40
s502, 36, 37, 37, 38–40
s503, 36–38, 38, 39, 40
s50a, 36–38, 39, 40
s50s, 36–39, 39
score.Test, 34, 45, 48
score.Test (Wald), 99
scoreTest (Wald), 99
setEffect, 3, 13, 15, 17, 19, 21, 40, 45, 100
siena, 48
siena (sienaDataCreate), 61
siena.table (sienaFit.methods), 65
siena07, 3, 4, 14, 20, 22, 29, 34, 43, 50, 52,

55–57, 62, 65, 67–69, 71, 73, 76, 81,
82, 86, 87, 89–91, 95, 96, 99–101

siena08, 12, 26, 32, 33, 50
sienaAlgorithm, 3, 43, 47, 59



INDEX 105

sienaAlgorithm (sienaAlgorithmCreate),
53

sienaAlgorithmCreate, 3, 14, 43, 45, 48, 53,
86

sienaCompositionChange, 58, 61, 62, 69
sienaCompositionChangeFromFile

(sienaCompositionChange), 58
sienaDataConstraint, 60, 62, 64, 82, 84
sienaDataCreate, 3, 7, 8, 15, 23, 59, 61, 61,

64, 84, 85, 90, 97–99
sienaDependent, 3, 44, 61, 62, 63, 82, 85
sienaEffects, 3, 31, 42, 48, 95
sienaEffects (getEffects), 12
sienaFit, 20, 26, 46, 48, 50, 65, 66, 68, 69,

73, 74, 95, 100, 102
sienaFit (sienaFit.methods), 65
sienaFit.methods, 65
sienaGOF, 3, 57, 67, 73, 74, 76
sienaGOF-auxiliary, 73
sienaGroup, 41
sienaGroup (sienaGroupCreate), 81
sienaGroupCreate, 15, 61, 62, 64, 81
sienaGroupEffects, 42
sienaGroupEffects (getEffects), 12
sienaMeta, 26, 51
sienaMeta (siena08), 50
sienaModel (sienaAlgorithmCreate), 53
sienaModelCreate

(sienaAlgorithmCreate), 53
sienaNet (sienaDependent), 63
sienaNodeSet, 7, 59, 62, 64, 84, 98, 99
sienaTest, 34
sienaTest (Wald), 99
sienaTest.methods (print.sienaTest), 34
sienaTimeTest, 23, 28, 29, 31, 57, 70, 71, 85,

90
simstats0c, 44, 57, 89
sparseMatrixExtraction

(sienaGOF-auxiliary), 73
summary, 93
summary.iwlsm, 92
summary.sienaEffects, 11
summary.sienaEffects

(print.sienaEffects), 30
summary.sienaFit (sienaFit.methods), 65
summary.sienaMeta (print.sienaMeta), 31

tempfile, 54
terminateFRAN (simstats0c), 89

testSame.RSiena (Wald), 99
tmp3, 94, 95
tmp4, 94, 94
TriadCensus, 70
TriadCensus (sienaGOF-auxiliary), 73

updateSpecification, 15, 17, 42
updateSpecification (updateTheta), 95
updateTheta, 95

varCovar, 3, 7, 8, 61, 62, 97, 99
varDyadCovar, 7, 8, 61, 62, 98, 98

Wald, 99
Wald.RSiena, 34, 45, 48
Wald.RSiena (Wald), 99

xtable, 48, 66, 67, 101
xtable.sienaFit, 102
xtable.sienaFit (sienaFit.methods), 65
xyplot, 29


	RSiena-package
	allEffects
	coCovar
	coDyadCovar
	edit.sienaEffects
	effectsDocumentation
	funnelPlot
	getEffects
	hn3401
	includeEffects
	includeGMoMStatistics
	includeInteraction
	includeTimeDummy
	iwlsm
	n3401
	plot.sienaTimeTest
	print.sienaEffects
	print.sienaMeta
	print.sienaTest
	print01Report
	s50
	s501
	s502
	s503
	s50a
	s50s
	setEffect
	siena07
	siena08
	sienaAlgorithmCreate
	sienaCompositionChange
	sienaDataConstraint
	sienaDataCreate
	sienaDependent
	sienaFit.methods
	sienaGOF
	sienaGOF-auxiliary
	sienaGroupCreate
	sienaNodeSet
	sienaTimeTest
	simstats0c
	summary.iwlsm
	tmp3
	tmp4
	updateTheta
	varCovar
	varDyadCovar
	Wald
	xtable
	Index

